| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eulercrct | Structured version Visualization version GIF version | ||
| Description: A pseudograph with an Eulerian circuit 〈𝐹, 𝑃〉 (an "Eulerian pseudograph") has only vertices of even degree. (Contributed by AV, 12-Mar-2021.) |
| Ref | Expression |
|---|---|
| eulerpathpr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| eulercrct | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝐹(Circuits‘𝐺)𝑃) → ∀𝑥 ∈ 𝑉 2 ∥ ((VtxDeg‘𝐺)‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulerpathpr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eqid 2733 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | simpl 482 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → 𝐺 ∈ UPGraph) | |
| 4 | upgruhgr 29101 | . . . . . 6 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
| 5 | 2 | uhgrfun 29065 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺)) |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → Fun (iEdg‘𝐺)) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → Fun (iEdg‘𝐺)) |
| 8 | simpr 484 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → 𝐹(EulerPaths‘𝐺)𝑃) | |
| 9 | 1, 2, 3, 7, 8 | eupth2 30240 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) |
| 10 | 9 | 3adant3 1132 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝐹(Circuits‘𝐺)𝑃) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) |
| 11 | crctprop 29791 | . . . . . . 7 ⊢ (𝐹(Circuits‘𝐺)𝑃 → (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
| 12 | 11 | simprd 495 | . . . . . 6 ⊢ (𝐹(Circuits‘𝐺)𝑃 → (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
| 13 | 12 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝐹(Circuits‘𝐺)𝑃) → (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
| 14 | 13 | iftrued 4484 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝐹(Circuits‘𝐺)𝑃) → if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) = ∅) |
| 15 | 14 | eqeq2d 2744 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝐹(Circuits‘𝐺)𝑃) → ({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) ↔ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = ∅)) |
| 16 | rabeq0 4337 | . . . 4 ⊢ ({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = ∅ ↔ ∀𝑥 ∈ 𝑉 ¬ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)) | |
| 17 | notnotr 130 | . . . . 5 ⊢ (¬ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) → 2 ∥ ((VtxDeg‘𝐺)‘𝑥)) | |
| 18 | 17 | ralimi 3070 | . . . 4 ⊢ (∀𝑥 ∈ 𝑉 ¬ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) → ∀𝑥 ∈ 𝑉 2 ∥ ((VtxDeg‘𝐺)‘𝑥)) |
| 19 | 16, 18 | sylbi 217 | . . 3 ⊢ ({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = ∅ → ∀𝑥 ∈ 𝑉 2 ∥ ((VtxDeg‘𝐺)‘𝑥)) |
| 20 | 15, 19 | biimtrdi 253 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝐹(Circuits‘𝐺)𝑃) → ({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) → ∀𝑥 ∈ 𝑉 2 ∥ ((VtxDeg‘𝐺)‘𝑥))) |
| 21 | 10, 20 | mpd 15 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝐹(Circuits‘𝐺)𝑃) → ∀𝑥 ∈ 𝑉 2 ∥ ((VtxDeg‘𝐺)‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 ∅c0 4282 ifcif 4476 {cpr 4579 class class class wbr 5095 Fun wfun 6483 ‘cfv 6489 0cc0 11017 2c2 12191 ♯chash 14244 ∥ cdvds 16170 Vtxcvtx 28995 iEdgciedg 28996 UHGraphcuhgr 29055 UPGraphcupgr 29079 VtxDegcvtxdg 29465 Trailsctrls 29688 Circuitsccrcts 29783 EulerPathsceupth 30198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-er 8631 df-map 8761 df-pm 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-dju 9805 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-xnn0 12466 df-z 12480 df-uz 12743 df-rp 12897 df-xadd 13018 df-fz 13415 df-fzo 13562 df-seq 13916 df-exp 13976 df-hash 14245 df-word 14428 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-dvds 16171 df-vtx 28997 df-iedg 28998 df-edg 29047 df-uhgr 29057 df-ushgr 29058 df-upgr 29081 df-uspgr 29149 df-vtxdg 29466 df-wlks 29599 df-trls 29690 df-crcts 29785 df-eupth 30199 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |