![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eulercrct | Structured version Visualization version GIF version |
Description: A pseudograph with an Eulerian circuit 〈𝐹, 𝑃〉 (an "Eulerian pseudograph") has only vertices of even degree. (Contributed by AV, 12-Mar-2021.) |
Ref | Expression |
---|---|
eulerpathpr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
eulercrct | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝐹(Circuits‘𝐺)𝑃) → ∀𝑥 ∈ 𝑉 2 ∥ ((VtxDeg‘𝐺)‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eulerpathpr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eqid 2728 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | simpl 481 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → 𝐺 ∈ UPGraph) | |
4 | upgruhgr 28935 | . . . . . 6 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
5 | 2 | uhgrfun 28899 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺)) |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → Fun (iEdg‘𝐺)) |
7 | 6 | adantr 479 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → Fun (iEdg‘𝐺)) |
8 | simpr 483 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → 𝐹(EulerPaths‘𝐺)𝑃) | |
9 | 1, 2, 3, 7, 8 | eupth2 30069 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) |
10 | 9 | 3adant3 1129 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝐹(Circuits‘𝐺)𝑃) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))})) |
11 | crctprop 29626 | . . . . . . 7 ⊢ (𝐹(Circuits‘𝐺)𝑃 → (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
12 | 11 | simprd 494 | . . . . . 6 ⊢ (𝐹(Circuits‘𝐺)𝑃 → (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
13 | 12 | 3ad2ant3 1132 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝐹(Circuits‘𝐺)𝑃) → (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
14 | 13 | iftrued 4540 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝐹(Circuits‘𝐺)𝑃) → if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) = ∅) |
15 | 14 | eqeq2d 2739 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝐹(Circuits‘𝐺)𝑃) → ({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) ↔ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = ∅)) |
16 | rabeq0 4388 | . . . 4 ⊢ ({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = ∅ ↔ ∀𝑥 ∈ 𝑉 ¬ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)) | |
17 | notnotr 130 | . . . . 5 ⊢ (¬ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) → 2 ∥ ((VtxDeg‘𝐺)‘𝑥)) | |
18 | 17 | ralimi 3080 | . . . 4 ⊢ (∀𝑥 ∈ 𝑉 ¬ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) → ∀𝑥 ∈ 𝑉 2 ∥ ((VtxDeg‘𝐺)‘𝑥)) |
19 | 16, 18 | sylbi 216 | . . 3 ⊢ ({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = ∅ → ∀𝑥 ∈ 𝑉 2 ∥ ((VtxDeg‘𝐺)‘𝑥)) |
20 | 15, 19 | biimtrdi 252 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝐹(Circuits‘𝐺)𝑃) → ({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = if((𝑃‘0) = (𝑃‘(♯‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(♯‘𝐹))}) → ∀𝑥 ∈ 𝑉 2 ∥ ((VtxDeg‘𝐺)‘𝑥))) |
21 | 10, 20 | mpd 15 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝐹(Circuits‘𝐺)𝑃) → ∀𝑥 ∈ 𝑉 2 ∥ ((VtxDeg‘𝐺)‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3058 {crab 3430 ∅c0 4326 ifcif 4532 {cpr 4634 class class class wbr 5152 Fun wfun 6547 ‘cfv 6553 0cc0 11146 2c2 12305 ♯chash 14329 ∥ cdvds 16238 Vtxcvtx 28829 iEdgciedg 28830 UHGraphcuhgr 28889 UPGraphcupgr 28913 VtxDegcvtxdg 29299 Trailsctrls 29524 Circuitsccrcts 29618 EulerPathsceupth 30027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-2o 8494 df-oadd 8497 df-er 8731 df-map 8853 df-pm 8854 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-sup 9473 df-inf 9474 df-dju 9932 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-xnn0 12583 df-z 12597 df-uz 12861 df-rp 13015 df-xadd 13133 df-fz 13525 df-fzo 13668 df-seq 14007 df-exp 14067 df-hash 14330 df-word 14505 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-dvds 16239 df-vtx 28831 df-iedg 28832 df-edg 28881 df-uhgr 28891 df-ushgr 28892 df-upgr 28915 df-uspgr 28983 df-vtxdg 29300 df-wlks 29433 df-trls 29526 df-crcts 29620 df-eupth 30028 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |