Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noetasuplem4 Structured version   Visualization version   GIF version

Theorem noetasuplem4 33524
 Description: Lemma for noeta 33531. When 𝐴 and 𝐵 are separated, then 𝑍 is a lower bound for 𝐵. Part of Theorem 5.1 of [Lipparini] p. 7-8. (Contributed by Scott Fenton, 7-Dec-2021.)
Hypotheses
Ref Expression
noetasuplem.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetasuplem.2 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
Assertion
Ref Expression
noetasuplem4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∀𝑏𝐵 𝑍 <s 𝑏)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑔   𝑢,𝑎,𝐴,𝑣,𝑥,𝑦   𝐵,𝑎,𝑏   𝑔,𝑏,𝑥   𝑢,𝑔,𝑣,𝑥,𝑦   𝑆,𝑎,𝑔   𝑣,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑆(𝑥,𝑦,𝑣,𝑢,𝑏)   𝑍(𝑥,𝑦,𝑣,𝑢,𝑔,𝑎,𝑏)

Proof of Theorem noetasuplem4
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralcom 3272 . . 3 (∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ↔ ∀𝑏𝐵𝑎𝐴 𝑎 <s 𝑏)
2 simplll 774 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → 𝐴 No )
3 simpllr 775 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → 𝐴 ∈ V)
4 simprl 770 . . . . . . 7 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → 𝐵 No )
54sselda 3892 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → 𝑏 No )
6 noetasuplem.1 . . . . . . 7 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
76nosupbnd2 33504 . . . . . 6 ((𝐴 No 𝐴 ∈ V ∧ 𝑏 No ) → (∀𝑎𝐴 𝑎 <s 𝑏 ↔ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆))
82, 3, 5, 7syl3anc 1368 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → (∀𝑎𝐴 𝑎 <s 𝑏 ↔ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆))
9 simpl 486 . . . . . . . . . . 11 ((𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆) → 𝑏𝐵)
10 ssel2 3887 . . . . . . . . . . 11 ((𝐵 No 𝑏𝐵) → 𝑏 No )
114, 9, 10syl2an 598 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → 𝑏 No )
12 nodmord 33441 . . . . . . . . . 10 (𝑏 No → Ord dom 𝑏)
13 ordirr 6187 . . . . . . . . . 10 (Ord dom 𝑏 → ¬ dom 𝑏 ∈ dom 𝑏)
1411, 12, 133syl 18 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → ¬ dom 𝑏 ∈ dom 𝑏)
15 ssun2 4078 . . . . . . . . . . 11 suc ( bday 𝐵) ⊆ (dom 𝑆 ∪ suc ( bday 𝐵))
16 bdayval 33436 . . . . . . . . . . . . . . 15 (𝑏 No → ( bday 𝑏) = dom 𝑏)
1711, 16syl 17 . . . . . . . . . . . . . 14 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → ( bday 𝑏) = dom 𝑏)
18 bdayfo 33465 . . . . . . . . . . . . . . . . 17 bday : No onto→On
19 fofn 6578 . . . . . . . . . . . . . . . . 17 ( bday : No onto→On → bday Fn No )
2018, 19ax-mp 5 . . . . . . . . . . . . . . . 16 bday Fn No
21 fnfvima 6987 . . . . . . . . . . . . . . . 16 (( bday Fn No 𝐵 No 𝑏𝐵) → ( bday 𝑏) ∈ ( bday 𝐵))
2220, 21mp3an1 1445 . . . . . . . . . . . . . . 15 ((𝐵 No 𝑏𝐵) → ( bday 𝑏) ∈ ( bday 𝐵))
234, 9, 22syl2an 598 . . . . . . . . . . . . . 14 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → ( bday 𝑏) ∈ ( bday 𝐵))
2417, 23eqeltrrd 2853 . . . . . . . . . . . . 13 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → dom 𝑏 ∈ ( bday 𝐵))
25 elssuni 4830 . . . . . . . . . . . . 13 (dom 𝑏 ∈ ( bday 𝐵) → dom 𝑏 ( bday 𝐵))
2624, 25syl 17 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → dom 𝑏 ( bday 𝐵))
27 nodmon 33438 . . . . . . . . . . . . 13 (𝑏 No → dom 𝑏 ∈ On)
28 imassrn 5912 . . . . . . . . . . . . . . . 16 ( bday 𝐵) ⊆ ran bday
29 forn 6579 . . . . . . . . . . . . . . . . 17 ( bday : No onto→On → ran bday = On)
3018, 29ax-mp 5 . . . . . . . . . . . . . . . 16 ran bday = On
3128, 30sseqtri 3928 . . . . . . . . . . . . . . 15 ( bday 𝐵) ⊆ On
32 ssorduni 7499 . . . . . . . . . . . . . . 15 (( bday 𝐵) ⊆ On → Ord ( bday 𝐵))
3331, 32ax-mp 5 . . . . . . . . . . . . . 14 Ord ( bday 𝐵)
34 ordsssuc 6255 . . . . . . . . . . . . . 14 ((dom 𝑏 ∈ On ∧ Ord ( bday 𝐵)) → (dom 𝑏 ( bday 𝐵) ↔ dom 𝑏 ∈ suc ( bday 𝐵)))
3533, 34mpan2 690 . . . . . . . . . . . . 13 (dom 𝑏 ∈ On → (dom 𝑏 ( bday 𝐵) ↔ dom 𝑏 ∈ suc ( bday 𝐵)))
3611, 27, 353syl 18 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → (dom 𝑏 ( bday 𝐵) ↔ dom 𝑏 ∈ suc ( bday 𝐵)))
3726, 36mpbid 235 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → dom 𝑏 ∈ suc ( bday 𝐵))
3815, 37sseldi 3890 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → dom 𝑏 ∈ (dom 𝑆 ∪ suc ( bday 𝐵)))
39 eleq2 2840 . . . . . . . . . 10 ((dom 𝑆 ∪ suc ( bday 𝐵)) = dom 𝑏 → (dom 𝑏 ∈ (dom 𝑆 ∪ suc ( bday 𝐵)) ↔ dom 𝑏 ∈ dom 𝑏))
4038, 39syl5ibcom 248 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → ((dom 𝑆 ∪ suc ( bday 𝐵)) = dom 𝑏 → dom 𝑏 ∈ dom 𝑏))
4114, 40mtod 201 . . . . . . . 8 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → ¬ (dom 𝑆 ∪ suc ( bday 𝐵)) = dom 𝑏)
42 noetasuplem.2 . . . . . . . . . . . 12 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
4342dmeqi 5744 . . . . . . . . . . 11 dom 𝑍 = dom (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
44 dmun 5750 . . . . . . . . . . 11 dom (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) = (dom 𝑆 ∪ dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
4543, 44eqtri 2781 . . . . . . . . . 10 dom 𝑍 = (dom 𝑆 ∪ dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
46 1oex 8120 . . . . . . . . . . . . 13 1o ∈ V
4746snnz 4669 . . . . . . . . . . . 12 {1o} ≠ ∅
48 dmxp 5770 . . . . . . . . . . . 12 ({1o} ≠ ∅ → dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) = (suc ( bday 𝐵) ∖ dom 𝑆))
4947, 48ax-mp 5 . . . . . . . . . . 11 dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) = (suc ( bday 𝐵) ∖ dom 𝑆)
5049uneq2i 4065 . . . . . . . . . 10 (dom 𝑆 ∪ dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) = (dom 𝑆 ∪ (suc ( bday 𝐵) ∖ dom 𝑆))
51 undif2 4373 . . . . . . . . . 10 (dom 𝑆 ∪ (suc ( bday 𝐵) ∖ dom 𝑆)) = (dom 𝑆 ∪ suc ( bday 𝐵))
5245, 50, 513eqtri 2785 . . . . . . . . 9 dom 𝑍 = (dom 𝑆 ∪ suc ( bday 𝐵))
53 dmeq 5743 . . . . . . . . 9 (𝑍 = 𝑏 → dom 𝑍 = dom 𝑏)
5452, 53syl5eqr 2807 . . . . . . . 8 (𝑍 = 𝑏 → (dom 𝑆 ∪ suc ( bday 𝐵)) = dom 𝑏)
5541, 54nsyl 142 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → ¬ 𝑍 = 𝑏)
56 df-ne 2952 . . . . . . . 8 (𝑍𝑏 ↔ ¬ 𝑍 = 𝑏)
57 notnotr 132 . . . . . . . . . . . . . . 15 (¬ ¬ dom (𝑏 ↾ dom 𝑆) = dom 𝑆 → dom (𝑏 ↾ dom 𝑆) = dom 𝑆)
58 simpr 488 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆)
5958fvresd 6678 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑍 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
6042reseq1i 5819 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑍 ↾ dom 𝑆) = ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom 𝑆)
61 resundir 5838 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom 𝑆) = ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆))
62 df-res 5536 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ∩ (dom 𝑆 × V))
63 incom 4106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((suc ( bday 𝐵) ∖ dom 𝑆) ∩ dom 𝑆) = (dom 𝑆 ∩ (suc ( bday 𝐵) ∖ dom 𝑆))
64 disjdif 4368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (dom 𝑆 ∩ (suc ( bday 𝐵) ∖ dom 𝑆)) = ∅
6563, 64eqtri 2781 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((suc ( bday 𝐵) ∖ dom 𝑆) ∩ dom 𝑆) = ∅
66 xpdisj1 5990 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((suc ( bday 𝐵) ∖ dom 𝑆) ∩ dom 𝑆) = ∅ → (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ∩ (dom 𝑆 × V)) = ∅)
6765, 66ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ∩ (dom 𝑆 × V)) = ∅
6862, 67eqtri 2781 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅
6968uneq2i 4065 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑆) ∪ ∅)
70 un0 4286 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 ↾ dom 𝑆) ∪ ∅) = (𝑆 ↾ dom 𝑆)
7169, 70eqtri 2781 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆)) = (𝑆 ↾ dom 𝑆)
7260, 61, 713eqtri 2785 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑍 ↾ dom 𝑆) = (𝑆 ↾ dom 𝑆)
73 simplll 774 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → (𝐴 No 𝐴 ∈ V))
746nosupno 33491 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
7573, 74syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝑆 No )
7675adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → 𝑆 No )
77 nofun 33437 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑆 No → Fun 𝑆)
7876, 77syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → Fun 𝑆)
79 funrel 6352 . . . . . . . . . . . . . . . . . . . . . . . 24 (Fun 𝑆 → Rel 𝑆)
80 resdm 5868 . . . . . . . . . . . . . . . . . . . . . . . 24 (Rel 𝑆 → (𝑆 ↾ dom 𝑆) = 𝑆)
8178, 79, 803syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑆 ↾ dom 𝑆) = 𝑆)
8272, 81syl5eq 2805 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑍 ↾ dom 𝑆) = 𝑆)
8382fveq1d 6660 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑍 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
8459, 83eqtr3d 2795 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
85 simp-4l 782 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝐴 No )
86 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝐴 ∈ V)
87 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → 𝐵 ∈ V)
8887adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝐵 ∈ V)
896, 42noetasuplem1 33521 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 No )
9085, 86, 88, 89syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝑍 No )
9190adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → 𝑍 No )
9211adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝑏 No )
9392adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → 𝑏 No )
94 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → 𝑍𝑏)
95 nosepne 33468 . . . . . . . . . . . . . . . . . . . . 21 ((𝑍 No 𝑏 No 𝑍𝑏) → (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ (𝑏 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
9691, 93, 94, 95syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ (𝑏 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
9784, 96eqnetrrd 3019 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ (𝑏 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
9858fvresd 6678 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = (𝑏 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
9997, 98neeqtrrd 3025 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ ((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
100 fveq2 6658 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 = {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} → ((𝑏 ↾ dom 𝑆)‘𝑞) = ((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
101 fveq2 6658 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 = {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} → (𝑆𝑞) = (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
102100, 101neeq12d 3012 . . . . . . . . . . . . . . . . . . . 20 (𝑞 = {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} → (((𝑏 ↾ dom 𝑆)‘𝑞) ≠ (𝑆𝑞) ↔ ((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)})))
103 df-ne 2952 . . . . . . . . . . . . . . . . . . . 20 (((𝑏 ↾ dom 𝑆)‘𝑞) ≠ (𝑆𝑞) ↔ ¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞))
104 necom 3004 . . . . . . . . . . . . . . . . . . . 20 (((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ↔ (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ ((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
105102, 103, 1043bitr3g 316 . . . . . . . . . . . . . . . . . . 19 (𝑞 = {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} → (¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞) ↔ (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ ((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)})))
106105rspcev 3541 . . . . . . . . . . . . . . . . . 18 (( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆 ∧ (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ ((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)})) → ∃𝑞 ∈ dom 𝑆 ¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞))
10758, 99, 106syl2anc 587 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ∃𝑞 ∈ dom 𝑆 ¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞))
108 rexeq 3324 . . . . . . . . . . . . . . . . 17 (dom (𝑏 ↾ dom 𝑆) = dom 𝑆 → (∃𝑞 ∈ dom (𝑏 ↾ dom 𝑆) ¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞) ↔ ∃𝑞 ∈ dom 𝑆 ¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)))
109107, 108syl5ibrcom 250 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (dom (𝑏 ↾ dom 𝑆) = dom 𝑆 → ∃𝑞 ∈ dom (𝑏 ↾ dom 𝑆) ¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)))
110 rexnal 3165 . . . . . . . . . . . . . . . 16 (∃𝑞 ∈ dom (𝑏 ↾ dom 𝑆) ¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞) ↔ ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞))
111109, 110syl6ib 254 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (dom (𝑏 ↾ dom 𝑆) = dom 𝑆 → ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)))
11257, 111syl5 34 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (¬ ¬ dom (𝑏 ↾ dom 𝑆) = dom 𝑆 → ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)))
113112orrd 860 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (¬ dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∨ ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)))
114 nofun 33437 . . . . . . . . . . . . . . . . 17 (𝑏 No → Fun 𝑏)
115 funres 6377 . . . . . . . . . . . . . . . . 17 (Fun 𝑏 → Fun (𝑏 ↾ dom 𝑆))
11693, 114, 1153syl 18 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → Fun (𝑏 ↾ dom 𝑆))
117 eqfunfv 6798 . . . . . . . . . . . . . . . 16 ((Fun (𝑏 ↾ dom 𝑆) ∧ Fun 𝑆) → ((𝑏 ↾ dom 𝑆) = 𝑆 ↔ (dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∧ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞))))
118116, 78, 117syl2anc 587 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑏 ↾ dom 𝑆) = 𝑆 ↔ (dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∧ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞))))
119 ianor 979 . . . . . . . . . . . . . . . 16 (¬ (dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∧ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)) ↔ (¬ dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∨ ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)))
120119con1bii 360 . . . . . . . . . . . . . . 15 (¬ (¬ dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∨ ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)) ↔ (dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∧ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)))
121118, 120bitr4di 292 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑏 ↾ dom 𝑆) = 𝑆 ↔ ¬ (¬ dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∨ ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞))))
122121con2bid 358 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((¬ dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∨ ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)) ↔ ¬ (𝑏 ↾ dom 𝑆) = 𝑆))
123113, 122mpbid 235 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ¬ (𝑏 ↾ dom 𝑆) = 𝑆)
124123pm2.21d 121 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑏 ↾ dom 𝑆) = 𝑆𝑍 <s 𝑏))
12582breq1d 5042 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑍 ↾ dom 𝑆) <s (𝑏 ↾ dom 𝑆) ↔ 𝑆 <s (𝑏 ↾ dom 𝑆)))
126 nodmon 33438 . . . . . . . . . . . . . 14 (𝑆 No → dom 𝑆 ∈ On)
12776, 126syl 17 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → dom 𝑆 ∈ On)
128 sltres 33450 . . . . . . . . . . . . 13 ((𝑍 No 𝑏 No ∧ dom 𝑆 ∈ On) → ((𝑍 ↾ dom 𝑆) <s (𝑏 ↾ dom 𝑆) → 𝑍 <s 𝑏))
12991, 93, 127, 128syl3anc 1368 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑍 ↾ dom 𝑆) <s (𝑏 ↾ dom 𝑆) → 𝑍 <s 𝑏))
130125, 129sylbird 263 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑆 <s (𝑏 ↾ dom 𝑆) → 𝑍 <s 𝑏))
131 simplrr 777 . . . . . . . . . . . . 13 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)
132131adantr 484 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)
133 noreson 33448 . . . . . . . . . . . . . . 15 ((𝑏 No ∧ dom 𝑆 ∈ On) → (𝑏 ↾ dom 𝑆) ∈ No )
13493, 127, 133syl2anc 587 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑏 ↾ dom 𝑆) ∈ No )
135 sltso 33464 . . . . . . . . . . . . . . 15 <s Or No
136 sotric 5470 . . . . . . . . . . . . . . 15 (( <s Or No ∧ ((𝑏 ↾ dom 𝑆) ∈ No 𝑆 No )) → ((𝑏 ↾ dom 𝑆) <s 𝑆 ↔ ¬ ((𝑏 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑏 ↾ dom 𝑆))))
137135, 136mpan 689 . . . . . . . . . . . . . 14 (((𝑏 ↾ dom 𝑆) ∈ No 𝑆 No ) → ((𝑏 ↾ dom 𝑆) <s 𝑆 ↔ ¬ ((𝑏 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑏 ↾ dom 𝑆))))
138134, 76, 137syl2anc 587 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑏 ↾ dom 𝑆) <s 𝑆 ↔ ¬ ((𝑏 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑏 ↾ dom 𝑆))))
139138con2bid 358 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (((𝑏 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑏 ↾ dom 𝑆)) ↔ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆))
140132, 139mpbird 260 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑏 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑏 ↾ dom 𝑆)))
141124, 130, 140mpjaod 857 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → 𝑍 <s 𝑏)
14290adantr 484 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝑍 No )
14392adantr 484 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝑏 No )
144 simplr 768 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝑍𝑏)
14542fveq1i 6659 . . . . . . . . . . . . 13 (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)})
146 simp-4l 782 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (𝐴 No 𝐴 ∈ V))
147146, 74, 773syl 18 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → Fun 𝑆)
148 funfn 6365 . . . . . . . . . . . . . . 15 (Fun 𝑆𝑆 Fn dom 𝑆)
149147, 148sylib 221 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝑆 Fn dom 𝑆)
15046fconst 6550 . . . . . . . . . . . . . . . 16 ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}):(suc ( bday 𝐵) ∖ dom 𝑆)⟶{1o}
151 ffn 6498 . . . . . . . . . . . . . . . 16 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}):(suc ( bday 𝐵) ∖ dom 𝑆)⟶{1o} → ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) Fn (suc ( bday 𝐵) ∖ dom 𝑆))
152150, 151ax-mp 5 . . . . . . . . . . . . . . 15 ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) Fn (suc ( bday 𝐵) ∖ dom 𝑆)
153152a1i 11 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) Fn (suc ( bday 𝐵) ∖ dom 𝑆))
15464a1i 11 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (dom 𝑆 ∩ (suc ( bday 𝐵) ∖ dom 𝑆)) = ∅)
155 necom 3004 . . . . . . . . . . . . . . . . . . 19 ((𝑍𝑝) ≠ (𝑏𝑝) ↔ (𝑏𝑝) ≠ (𝑍𝑝))
156155rabbii 3385 . . . . . . . . . . . . . . . . . 18 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} = {𝑝 ∈ On ∣ (𝑏𝑝) ≠ (𝑍𝑝)}
157156inteqi 4842 . . . . . . . . . . . . . . . . 17 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} = {𝑝 ∈ On ∣ (𝑏𝑝) ≠ (𝑍𝑝)}
158144necomd 3006 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝑏𝑍)
159 nosepssdm 33474 . . . . . . . . . . . . . . . . . 18 ((𝑏 No 𝑍 No 𝑏𝑍) → {𝑝 ∈ On ∣ (𝑏𝑝) ≠ (𝑍𝑝)} ⊆ dom 𝑏)
160143, 142, 158, 159syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → {𝑝 ∈ On ∣ (𝑏𝑝) ≠ (𝑍𝑝)} ⊆ dom 𝑏)
161157, 160eqsstrid 3940 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ⊆ dom 𝑏)
162143, 16syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → ( bday 𝑏) = dom 𝑏)
163 simplrl 776 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → 𝐵 No )
164163adantr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝐵 No )
165164adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝐵 No )
166 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝑏𝐵)
167166adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝑏𝐵)
168165, 167, 22syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → ( bday 𝑏) ∈ ( bday 𝐵))
169162, 168eqeltrrd 2853 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → dom 𝑏 ∈ ( bday 𝐵))
170169, 25syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → dom 𝑏 ( bday 𝐵))
171143, 27, 353syl 18 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (dom 𝑏 ( bday 𝐵) ↔ dom 𝑏 ∈ suc ( bday 𝐵)))
172170, 171mpbid 235 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → dom 𝑏 ∈ suc ( bday 𝐵))
173 nosepon 33453 . . . . . . . . . . . . . . . . . 18 ((𝑍 No 𝑏 No 𝑍𝑏) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ On)
174142, 143, 144, 173syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ On)
175 eloni 6179 . . . . . . . . . . . . . . . . 17 ( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ On → Ord {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)})
176 ordsuc 7528 . . . . . . . . . . . . . . . . . . 19 (Ord ( bday 𝐵) ↔ Ord suc ( bday 𝐵))
17733, 176mpbi 233 . . . . . . . . . . . . . . . . . 18 Ord suc ( bday 𝐵)
178 ordtr2 6213 . . . . . . . . . . . . . . . . . 18 ((Ord {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∧ Ord suc ( bday 𝐵)) → (( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ⊆ dom 𝑏 ∧ dom 𝑏 ∈ suc ( bday 𝐵)) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ suc ( bday 𝐵)))
179177, 178mpan2 690 . . . . . . . . . . . . . . . . 17 (Ord {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} → (( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ⊆ dom 𝑏 ∧ dom 𝑏 ∈ suc ( bday 𝐵)) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ suc ( bday 𝐵)))
180174, 175, 1793syl 18 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ⊆ dom 𝑏 ∧ dom 𝑏 ∈ suc ( bday 𝐵)) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ suc ( bday 𝐵)))
181161, 172, 180mp2and 698 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ suc ( bday 𝐵))
182 simpr 488 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)})
183146, 74, 1263syl 18 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → dom 𝑆 ∈ On)
184 ontri1 6203 . . . . . . . . . . . . . . . . 17 ((dom 𝑆 ∈ On ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ On) → (dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ↔ ¬ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆))
185183, 174, 184syl2anc 587 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ↔ ¬ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆))
186182, 185mpbid 235 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → ¬ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆)
187181, 186eldifd 3869 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ (suc ( bday 𝐵) ∖ dom 𝑆))
188 fvun2 6744 . . . . . . . . . . . . . 14 ((𝑆 Fn dom 𝑆 ∧ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) Fn (suc ( bday 𝐵) ∖ dom 𝑆) ∧ ((dom 𝑆 ∩ (suc ( bday 𝐵) ∖ dom 𝑆)) = ∅ ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ (suc ( bday 𝐵) ∖ dom 𝑆))) → ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
189149, 153, 154, 187, 188syl112anc 1371 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
190145, 189syl5eq 2805 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
19146fvconst2 6957 . . . . . . . . . . . . 13 ( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ (suc ( bday 𝐵) ∖ dom 𝑆) → (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = 1o)
192187, 191syl 17 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = 1o)
193190, 192eqtrd 2793 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = 1o)
194 nosep1o 33469 . . . . . . . . . . 11 (((𝑍 No 𝑏 No 𝑍𝑏) ∧ (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = 1o) → 𝑍 <s 𝑏)
195142, 143, 144, 193, 194syl31anc 1370 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝑍 <s 𝑏)
196 simpr 488 . . . . . . . . . . . . 13 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝑍𝑏)
19790, 92, 196, 173syl3anc 1368 . . . . . . . . . . . 12 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ On)
198197, 175syl 17 . . . . . . . . . . 11 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → Ord {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)})
199 nodmord 33441 . . . . . . . . . . . 12 (𝑆 No → Ord dom 𝑆)
20073, 74, 1993syl 18 . . . . . . . . . . 11 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → Ord dom 𝑆)
201 ordtri2or 6264 . . . . . . . . . . 11 ((Ord {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∧ Ord dom 𝑆) → ( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆 ∨ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
202198, 200, 201syl2anc 587 . . . . . . . . . 10 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → ( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆 ∨ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
203141, 195, 202mpjaodan 956 . . . . . . . . 9 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝑍 <s 𝑏)
204203ex 416 . . . . . . . 8 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → (𝑍𝑏𝑍 <s 𝑏))
20556, 204syl5bir 246 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → (¬ 𝑍 = 𝑏𝑍 <s 𝑏))
20655, 205mpd 15 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → 𝑍 <s 𝑏)
207206expr 460 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → (¬ (𝑏 ↾ dom 𝑆) <s 𝑆𝑍 <s 𝑏))
2088, 207sylbid 243 . . . 4 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → (∀𝑎𝐴 𝑎 <s 𝑏𝑍 <s 𝑏))
209208ralimdva 3108 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → (∀𝑏𝐵𝑎𝐴 𝑎 <s 𝑏 → ∀𝑏𝐵 𝑍 <s 𝑏))
2101, 209syl5bi 245 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → (∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 → ∀𝑏𝐵 𝑍 <s 𝑏))
2112103impia 1114 1 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∀𝑏𝐵 𝑍 <s 𝑏)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  {cab 2735   ≠ wne 2951  ∀wral 3070  ∃wrex 3071  {crab 3074  Vcvv 3409   ∖ cdif 3855   ∪ cun 3856   ∩ cin 3857   ⊆ wss 3858  ∅c0 4225  ifcif 4420  {csn 4522  ⟨cop 4528  ∪ cuni 4798  ∩ cint 4838   class class class wbr 5032   ↦ cmpt 5112   Or wor 5442   × cxp 5522  dom cdm 5524  ran crn 5525   ↾ cres 5526   “ cima 5527  Rel wrel 5529  Ord word 6168  Oncon0 6169  suc csuc 6171  ℩cio 6292  Fun wfun 6329   Fn wfn 6330  ⟶wf 6331  –onto→wfo 6333  ‘cfv 6335  ℩crio 7107  1oc1o 8105  2oc2o 8106   No csur 33428
 Copyright terms: Public domain W3C validator