MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noetasuplem4 Structured version   Visualization version   GIF version

Theorem noetasuplem4 27735
Description: Lemma for noeta 27742. When 𝐴 and 𝐵 are separated, then 𝑍 is a lower bound for 𝐵. Part of Theorem 5.1 of [Lipparini] p. 7-8. (Contributed by Scott Fenton, 7-Dec-2021.)
Hypotheses
Ref Expression
noetasuplem.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetasuplem.2 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
Assertion
Ref Expression
noetasuplem4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∀𝑏𝐵 𝑍 <s 𝑏)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑔   𝑢,𝑎,𝐴,𝑣,𝑥,𝑦   𝐵,𝑎,𝑏   𝑔,𝑏,𝑥   𝑢,𝑔,𝑣,𝑥,𝑦   𝑆,𝑎,𝑔   𝑣,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑆(𝑥,𝑦,𝑣,𝑢,𝑏)   𝑍(𝑥,𝑦,𝑣,𝑢,𝑔,𝑎,𝑏)

Proof of Theorem noetasuplem4
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralcom 3276 . . 3 (∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ↔ ∀𝑏𝐵𝑎𝐴 𝑎 <s 𝑏)
2 simplll 773 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → 𝐴 No )
3 simpllr 774 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → 𝐴 ∈ V)
4 simprl 769 . . . . . . 7 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → 𝐵 No )
54sselda 3976 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → 𝑏 No )
6 noetasuplem.1 . . . . . . 7 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
76nosupbnd2 27715 . . . . . 6 ((𝐴 No 𝐴 ∈ V ∧ 𝑏 No ) → (∀𝑎𝐴 𝑎 <s 𝑏 ↔ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆))
82, 3, 5, 7syl3anc 1368 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → (∀𝑎𝐴 𝑎 <s 𝑏 ↔ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆))
9 simpl 481 . . . . . . . . . . 11 ((𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆) → 𝑏𝐵)
10 ssel2 3971 . . . . . . . . . . 11 ((𝐵 No 𝑏𝐵) → 𝑏 No )
114, 9, 10syl2an 594 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → 𝑏 No )
12 nodmord 27652 . . . . . . . . . 10 (𝑏 No → Ord dom 𝑏)
13 ordirr 6389 . . . . . . . . . 10 (Ord dom 𝑏 → ¬ dom 𝑏 ∈ dom 𝑏)
1411, 12, 133syl 18 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → ¬ dom 𝑏 ∈ dom 𝑏)
15 ssun2 4171 . . . . . . . . . . 11 suc ( bday 𝐵) ⊆ (dom 𝑆 ∪ suc ( bday 𝐵))
16 bdayval 27647 . . . . . . . . . . . . . . 15 (𝑏 No → ( bday 𝑏) = dom 𝑏)
1711, 16syl 17 . . . . . . . . . . . . . 14 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → ( bday 𝑏) = dom 𝑏)
18 bdayfo 27676 . . . . . . . . . . . . . . . . 17 bday : No onto→On
19 fofn 6812 . . . . . . . . . . . . . . . . 17 ( bday : No onto→On → bday Fn No )
2018, 19ax-mp 5 . . . . . . . . . . . . . . . 16 bday Fn No
21 fnfvima 7245 . . . . . . . . . . . . . . . 16 (( bday Fn No 𝐵 No 𝑏𝐵) → ( bday 𝑏) ∈ ( bday 𝐵))
2220, 21mp3an1 1444 . . . . . . . . . . . . . . 15 ((𝐵 No 𝑏𝐵) → ( bday 𝑏) ∈ ( bday 𝐵))
234, 9, 22syl2an 594 . . . . . . . . . . . . . 14 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → ( bday 𝑏) ∈ ( bday 𝐵))
2417, 23eqeltrrd 2826 . . . . . . . . . . . . 13 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → dom 𝑏 ∈ ( bday 𝐵))
25 elssuni 4941 . . . . . . . . . . . . 13 (dom 𝑏 ∈ ( bday 𝐵) → dom 𝑏 ( bday 𝐵))
2624, 25syl 17 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → dom 𝑏 ( bday 𝐵))
27 nodmon 27649 . . . . . . . . . . . . 13 (𝑏 No → dom 𝑏 ∈ On)
28 imassrn 6075 . . . . . . . . . . . . . . . 16 ( bday 𝐵) ⊆ ran bday
29 forn 6813 . . . . . . . . . . . . . . . . 17 ( bday : No onto→On → ran bday = On)
3018, 29ax-mp 5 . . . . . . . . . . . . . . . 16 ran bday = On
3128, 30sseqtri 4013 . . . . . . . . . . . . . . 15 ( bday 𝐵) ⊆ On
32 ssorduni 7782 . . . . . . . . . . . . . . 15 (( bday 𝐵) ⊆ On → Ord ( bday 𝐵))
3331, 32ax-mp 5 . . . . . . . . . . . . . 14 Ord ( bday 𝐵)
34 ordsssuc 6460 . . . . . . . . . . . . . 14 ((dom 𝑏 ∈ On ∧ Ord ( bday 𝐵)) → (dom 𝑏 ( bday 𝐵) ↔ dom 𝑏 ∈ suc ( bday 𝐵)))
3533, 34mpan2 689 . . . . . . . . . . . . 13 (dom 𝑏 ∈ On → (dom 𝑏 ( bday 𝐵) ↔ dom 𝑏 ∈ suc ( bday 𝐵)))
3611, 27, 353syl 18 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → (dom 𝑏 ( bday 𝐵) ↔ dom 𝑏 ∈ suc ( bday 𝐵)))
3726, 36mpbid 231 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → dom 𝑏 ∈ suc ( bday 𝐵))
3815, 37sselid 3974 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → dom 𝑏 ∈ (dom 𝑆 ∪ suc ( bday 𝐵)))
39 eleq2 2814 . . . . . . . . . 10 ((dom 𝑆 ∪ suc ( bday 𝐵)) = dom 𝑏 → (dom 𝑏 ∈ (dom 𝑆 ∪ suc ( bday 𝐵)) ↔ dom 𝑏 ∈ dom 𝑏))
4038, 39syl5ibcom 244 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → ((dom 𝑆 ∪ suc ( bday 𝐵)) = dom 𝑏 → dom 𝑏 ∈ dom 𝑏))
4114, 40mtod 197 . . . . . . . 8 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → ¬ (dom 𝑆 ∪ suc ( bday 𝐵)) = dom 𝑏)
42 noetasuplem.2 . . . . . . . . . . . 12 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
4342dmeqi 5907 . . . . . . . . . . 11 dom 𝑍 = dom (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
44 dmun 5913 . . . . . . . . . . 11 dom (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) = (dom 𝑆 ∪ dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
4543, 44eqtri 2753 . . . . . . . . . 10 dom 𝑍 = (dom 𝑆 ∪ dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
46 1oex 8497 . . . . . . . . . . . . 13 1o ∈ V
4746snnz 4782 . . . . . . . . . . . 12 {1o} ≠ ∅
48 dmxp 5931 . . . . . . . . . . . 12 ({1o} ≠ ∅ → dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) = (suc ( bday 𝐵) ∖ dom 𝑆))
4947, 48ax-mp 5 . . . . . . . . . . 11 dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) = (suc ( bday 𝐵) ∖ dom 𝑆)
5049uneq2i 4157 . . . . . . . . . 10 (dom 𝑆 ∪ dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) = (dom 𝑆 ∪ (suc ( bday 𝐵) ∖ dom 𝑆))
51 undif2 4478 . . . . . . . . . 10 (dom 𝑆 ∪ (suc ( bday 𝐵) ∖ dom 𝑆)) = (dom 𝑆 ∪ suc ( bday 𝐵))
5245, 50, 513eqtri 2757 . . . . . . . . 9 dom 𝑍 = (dom 𝑆 ∪ suc ( bday 𝐵))
53 dmeq 5906 . . . . . . . . 9 (𝑍 = 𝑏 → dom 𝑍 = dom 𝑏)
5452, 53eqtr3id 2779 . . . . . . . 8 (𝑍 = 𝑏 → (dom 𝑆 ∪ suc ( bday 𝐵)) = dom 𝑏)
5541, 54nsyl 140 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → ¬ 𝑍 = 𝑏)
56 df-ne 2930 . . . . . . . 8 (𝑍𝑏 ↔ ¬ 𝑍 = 𝑏)
57 notnotr 130 . . . . . . . . . . . . . . 15 (¬ ¬ dom (𝑏 ↾ dom 𝑆) = dom 𝑆 → dom (𝑏 ↾ dom 𝑆) = dom 𝑆)
58 simpr 483 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆)
5958fvresd 6916 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑍 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
6042reseq1i 5981 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑍 ↾ dom 𝑆) = ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom 𝑆)
61 resundir 6000 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom 𝑆) = ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆))
62 df-res 5690 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ∩ (dom 𝑆 × V))
63 disjdifr 4474 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((suc ( bday 𝐵) ∖ dom 𝑆) ∩ dom 𝑆) = ∅
64 xpdisj1 6167 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((suc ( bday 𝐵) ∖ dom 𝑆) ∩ dom 𝑆) = ∅ → (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ∩ (dom 𝑆 × V)) = ∅)
6563, 64ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ∩ (dom 𝑆 × V)) = ∅
6662, 65eqtri 2753 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅
6766uneq2i 4157 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑆) ∪ ∅)
68 un0 4392 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 ↾ dom 𝑆) ∪ ∅) = (𝑆 ↾ dom 𝑆)
6967, 68eqtri 2753 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆)) = (𝑆 ↾ dom 𝑆)
7060, 61, 693eqtri 2757 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑍 ↾ dom 𝑆) = (𝑆 ↾ dom 𝑆)
71 simplll 773 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → (𝐴 No 𝐴 ∈ V))
726nosupno 27702 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝑆 No )
7473adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → 𝑆 No )
75 nofun 27648 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑆 No → Fun 𝑆)
7674, 75syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → Fun 𝑆)
77 funrel 6571 . . . . . . . . . . . . . . . . . . . . . . . 24 (Fun 𝑆 → Rel 𝑆)
78 resdm 6031 . . . . . . . . . . . . . . . . . . . . . . . 24 (Rel 𝑆 → (𝑆 ↾ dom 𝑆) = 𝑆)
7976, 77, 783syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑆 ↾ dom 𝑆) = 𝑆)
8070, 79eqtrid 2777 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑍 ↾ dom 𝑆) = 𝑆)
8180fveq1d 6898 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑍 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
8259, 81eqtr3d 2767 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
83 simp-4l 781 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝐴 No )
84 simp-4r 782 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝐴 ∈ V)
85 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → 𝐵 ∈ V)
8685adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝐵 ∈ V)
876, 42noetasuplem1 27732 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 No )
8883, 84, 86, 87syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝑍 No )
8988adantr 479 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → 𝑍 No )
9011adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝑏 No )
9190adantr 479 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → 𝑏 No )
92 simplr 767 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → 𝑍𝑏)
93 nosepne 27679 . . . . . . . . . . . . . . . . . . . . 21 ((𝑍 No 𝑏 No 𝑍𝑏) → (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ (𝑏 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
9489, 91, 92, 93syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ (𝑏 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
9582, 94eqnetrrd 2998 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ (𝑏 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
9658fvresd 6916 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = (𝑏 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
9795, 96neeqtrrd 3004 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ ((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
98 fveq2 6896 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 = {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} → ((𝑏 ↾ dom 𝑆)‘𝑞) = ((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
99 fveq2 6896 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 = {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} → (𝑆𝑞) = (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
10098, 99neeq12d 2991 . . . . . . . . . . . . . . . . . . . 20 (𝑞 = {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} → (((𝑏 ↾ dom 𝑆)‘𝑞) ≠ (𝑆𝑞) ↔ ((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)})))
101 df-ne 2930 . . . . . . . . . . . . . . . . . . . 20 (((𝑏 ↾ dom 𝑆)‘𝑞) ≠ (𝑆𝑞) ↔ ¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞))
102 necom 2983 . . . . . . . . . . . . . . . . . . . 20 (((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ↔ (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ ((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
103100, 101, 1023bitr3g 312 . . . . . . . . . . . . . . . . . . 19 (𝑞 = {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} → (¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞) ↔ (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ ((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)})))
104103rspcev 3606 . . . . . . . . . . . . . . . . . 18 (( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆 ∧ (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ ((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)})) → ∃𝑞 ∈ dom 𝑆 ¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞))
10558, 97, 104syl2anc 582 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ∃𝑞 ∈ dom 𝑆 ¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞))
106 rexeq 3310 . . . . . . . . . . . . . . . . 17 (dom (𝑏 ↾ dom 𝑆) = dom 𝑆 → (∃𝑞 ∈ dom (𝑏 ↾ dom 𝑆) ¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞) ↔ ∃𝑞 ∈ dom 𝑆 ¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)))
107105, 106syl5ibrcom 246 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (dom (𝑏 ↾ dom 𝑆) = dom 𝑆 → ∃𝑞 ∈ dom (𝑏 ↾ dom 𝑆) ¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)))
108 rexnal 3089 . . . . . . . . . . . . . . . 16 (∃𝑞 ∈ dom (𝑏 ↾ dom 𝑆) ¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞) ↔ ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞))
109107, 108imbitrdi 250 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (dom (𝑏 ↾ dom 𝑆) = dom 𝑆 → ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)))
11057, 109syl5 34 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (¬ ¬ dom (𝑏 ↾ dom 𝑆) = dom 𝑆 → ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)))
111110orrd 861 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (¬ dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∨ ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)))
112 nofun 27648 . . . . . . . . . . . . . . . . 17 (𝑏 No → Fun 𝑏)
113 funres 6596 . . . . . . . . . . . . . . . . 17 (Fun 𝑏 → Fun (𝑏 ↾ dom 𝑆))
11491, 112, 1133syl 18 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → Fun (𝑏 ↾ dom 𝑆))
115 eqfunfv 7044 . . . . . . . . . . . . . . . 16 ((Fun (𝑏 ↾ dom 𝑆) ∧ Fun 𝑆) → ((𝑏 ↾ dom 𝑆) = 𝑆 ↔ (dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∧ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞))))
116114, 76, 115syl2anc 582 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑏 ↾ dom 𝑆) = 𝑆 ↔ (dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∧ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞))))
117 ianor 979 . . . . . . . . . . . . . . . 16 (¬ (dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∧ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)) ↔ (¬ dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∨ ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)))
118117con1bii 355 . . . . . . . . . . . . . . 15 (¬ (¬ dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∨ ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)) ↔ (dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∧ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)))
119116, 118bitr4di 288 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑏 ↾ dom 𝑆) = 𝑆 ↔ ¬ (¬ dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∨ ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞))))
120119con2bid 353 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((¬ dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∨ ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)) ↔ ¬ (𝑏 ↾ dom 𝑆) = 𝑆))
121111, 120mpbid 231 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ¬ (𝑏 ↾ dom 𝑆) = 𝑆)
122121pm2.21d 121 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑏 ↾ dom 𝑆) = 𝑆𝑍 <s 𝑏))
12380breq1d 5159 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑍 ↾ dom 𝑆) <s (𝑏 ↾ dom 𝑆) ↔ 𝑆 <s (𝑏 ↾ dom 𝑆)))
124 nodmon 27649 . . . . . . . . . . . . . 14 (𝑆 No → dom 𝑆 ∈ On)
12574, 124syl 17 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → dom 𝑆 ∈ On)
126 sltres 27661 . . . . . . . . . . . . 13 ((𝑍 No 𝑏 No ∧ dom 𝑆 ∈ On) → ((𝑍 ↾ dom 𝑆) <s (𝑏 ↾ dom 𝑆) → 𝑍 <s 𝑏))
12789, 91, 125, 126syl3anc 1368 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑍 ↾ dom 𝑆) <s (𝑏 ↾ dom 𝑆) → 𝑍 <s 𝑏))
128123, 127sylbird 259 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑆 <s (𝑏 ↾ dom 𝑆) → 𝑍 <s 𝑏))
129 simplrr 776 . . . . . . . . . . . . 13 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)
130129adantr 479 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)
131 noreson 27659 . . . . . . . . . . . . . . 15 ((𝑏 No ∧ dom 𝑆 ∈ On) → (𝑏 ↾ dom 𝑆) ∈ No )
13291, 125, 131syl2anc 582 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑏 ↾ dom 𝑆) ∈ No )
133 sltso 27675 . . . . . . . . . . . . . . 15 <s Or No
134 sotric 5618 . . . . . . . . . . . . . . 15 (( <s Or No ∧ ((𝑏 ↾ dom 𝑆) ∈ No 𝑆 No )) → ((𝑏 ↾ dom 𝑆) <s 𝑆 ↔ ¬ ((𝑏 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑏 ↾ dom 𝑆))))
135133, 134mpan 688 . . . . . . . . . . . . . 14 (((𝑏 ↾ dom 𝑆) ∈ No 𝑆 No ) → ((𝑏 ↾ dom 𝑆) <s 𝑆 ↔ ¬ ((𝑏 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑏 ↾ dom 𝑆))))
136132, 74, 135syl2anc 582 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑏 ↾ dom 𝑆) <s 𝑆 ↔ ¬ ((𝑏 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑏 ↾ dom 𝑆))))
137136con2bid 353 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (((𝑏 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑏 ↾ dom 𝑆)) ↔ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆))
138130, 137mpbird 256 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑏 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑏 ↾ dom 𝑆)))
139122, 128, 138mpjaod 858 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → 𝑍 <s 𝑏)
14088adantr 479 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝑍 No )
14190adantr 479 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝑏 No )
142 simplr 767 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝑍𝑏)
14342fveq1i 6897 . . . . . . . . . . . . 13 (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)})
144 simp-4l 781 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (𝐴 No 𝐴 ∈ V))
145144, 72, 753syl 18 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → Fun 𝑆)
146 funfn 6584 . . . . . . . . . . . . . . 15 (Fun 𝑆𝑆 Fn dom 𝑆)
147145, 146sylib 217 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝑆 Fn dom 𝑆)
14846fconst 6783 . . . . . . . . . . . . . . . 16 ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}):(suc ( bday 𝐵) ∖ dom 𝑆)⟶{1o}
149 ffn 6723 . . . . . . . . . . . . . . . 16 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}):(suc ( bday 𝐵) ∖ dom 𝑆)⟶{1o} → ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) Fn (suc ( bday 𝐵) ∖ dom 𝑆))
150148, 149ax-mp 5 . . . . . . . . . . . . . . 15 ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) Fn (suc ( bday 𝐵) ∖ dom 𝑆)
151150a1i 11 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) Fn (suc ( bday 𝐵) ∖ dom 𝑆))
152 disjdif 4473 . . . . . . . . . . . . . . 15 (dom 𝑆 ∩ (suc ( bday 𝐵) ∖ dom 𝑆)) = ∅
153152a1i 11 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (dom 𝑆 ∩ (suc ( bday 𝐵) ∖ dom 𝑆)) = ∅)
154 necom 2983 . . . . . . . . . . . . . . . . . . 19 ((𝑍𝑝) ≠ (𝑏𝑝) ↔ (𝑏𝑝) ≠ (𝑍𝑝))
155154rabbii 3424 . . . . . . . . . . . . . . . . . 18 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} = {𝑝 ∈ On ∣ (𝑏𝑝) ≠ (𝑍𝑝)}
156155inteqi 4954 . . . . . . . . . . . . . . . . 17 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} = {𝑝 ∈ On ∣ (𝑏𝑝) ≠ (𝑍𝑝)}
157142necomd 2985 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝑏𝑍)
158 nosepssdm 27685 . . . . . . . . . . . . . . . . . 18 ((𝑏 No 𝑍 No 𝑏𝑍) → {𝑝 ∈ On ∣ (𝑏𝑝) ≠ (𝑍𝑝)} ⊆ dom 𝑏)
159141, 140, 157, 158syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → {𝑝 ∈ On ∣ (𝑏𝑝) ≠ (𝑍𝑝)} ⊆ dom 𝑏)
160156, 159eqsstrid 4025 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ⊆ dom 𝑏)
161141, 16syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → ( bday 𝑏) = dom 𝑏)
162 simplrl 775 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → 𝐵 No )
163162adantr 479 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝐵 No )
164163adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝐵 No )
165 simplrl 775 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝑏𝐵)
166165adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝑏𝐵)
167164, 166, 22syl2anc 582 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → ( bday 𝑏) ∈ ( bday 𝐵))
168161, 167eqeltrrd 2826 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → dom 𝑏 ∈ ( bday 𝐵))
169168, 25syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → dom 𝑏 ( bday 𝐵))
170141, 27, 353syl 18 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (dom 𝑏 ( bday 𝐵) ↔ dom 𝑏 ∈ suc ( bday 𝐵)))
171169, 170mpbid 231 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → dom 𝑏 ∈ suc ( bday 𝐵))
172 nosepon 27664 . . . . . . . . . . . . . . . . . 18 ((𝑍 No 𝑏 No 𝑍𝑏) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ On)
173140, 141, 142, 172syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ On)
174 eloni 6381 . . . . . . . . . . . . . . . . 17 ( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ On → Ord {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)})
175 ordsuc 7817 . . . . . . . . . . . . . . . . . . 19 (Ord ( bday 𝐵) ↔ Ord suc ( bday 𝐵))
17633, 175mpbi 229 . . . . . . . . . . . . . . . . . 18 Ord suc ( bday 𝐵)
177 ordtr2 6415 . . . . . . . . . . . . . . . . . 18 ((Ord {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∧ Ord suc ( bday 𝐵)) → (( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ⊆ dom 𝑏 ∧ dom 𝑏 ∈ suc ( bday 𝐵)) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ suc ( bday 𝐵)))
178176, 177mpan2 689 . . . . . . . . . . . . . . . . 17 (Ord {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} → (( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ⊆ dom 𝑏 ∧ dom 𝑏 ∈ suc ( bday 𝐵)) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ suc ( bday 𝐵)))
179173, 174, 1783syl 18 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ⊆ dom 𝑏 ∧ dom 𝑏 ∈ suc ( bday 𝐵)) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ suc ( bday 𝐵)))
180160, 171, 179mp2and 697 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ suc ( bday 𝐵))
181 simpr 483 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)})
182144, 72, 1243syl 18 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → dom 𝑆 ∈ On)
183 ontri1 6405 . . . . . . . . . . . . . . . . 17 ((dom 𝑆 ∈ On ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ On) → (dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ↔ ¬ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆))
184182, 173, 183syl2anc 582 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ↔ ¬ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆))
185181, 184mpbid 231 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → ¬ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆)
186180, 185eldifd 3955 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ (suc ( bday 𝐵) ∖ dom 𝑆))
187 fvun2 6989 . . . . . . . . . . . . . 14 ((𝑆 Fn dom 𝑆 ∧ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) Fn (suc ( bday 𝐵) ∖ dom 𝑆) ∧ ((dom 𝑆 ∩ (suc ( bday 𝐵) ∖ dom 𝑆)) = ∅ ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ (suc ( bday 𝐵) ∖ dom 𝑆))) → ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
188147, 151, 153, 186, 187syl112anc 1371 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
189143, 188eqtrid 2777 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
19046fvconst2 7216 . . . . . . . . . . . . 13 ( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ (suc ( bday 𝐵) ∖ dom 𝑆) → (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = 1o)
191186, 190syl 17 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = 1o)
192189, 191eqtrd 2765 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = 1o)
193 nosep1o 27680 . . . . . . . . . . 11 (((𝑍 No 𝑏 No 𝑍𝑏) ∧ (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = 1o) → 𝑍 <s 𝑏)
194140, 141, 142, 192, 193syl31anc 1370 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝑍 <s 𝑏)
195 simpr 483 . . . . . . . . . . . . 13 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝑍𝑏)
19688, 90, 195, 172syl3anc 1368 . . . . . . . . . . . 12 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ On)
197196, 174syl 17 . . . . . . . . . . 11 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → Ord {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)})
198 nodmord 27652 . . . . . . . . . . . 12 (𝑆 No → Ord dom 𝑆)
19971, 72, 1983syl 18 . . . . . . . . . . 11 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → Ord dom 𝑆)
200 ordtri2or 6469 . . . . . . . . . . 11 ((Ord {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∧ Ord dom 𝑆) → ( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆 ∨ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
201197, 199, 200syl2anc 582 . . . . . . . . . 10 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → ( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆 ∨ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
202139, 194, 201mpjaodan 956 . . . . . . . . 9 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝑍 <s 𝑏)
203202ex 411 . . . . . . . 8 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → (𝑍𝑏𝑍 <s 𝑏))
20456, 203biimtrrid 242 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → (¬ 𝑍 = 𝑏𝑍 <s 𝑏))
20555, 204mpd 15 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → 𝑍 <s 𝑏)
206205expr 455 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → (¬ (𝑏 ↾ dom 𝑆) <s 𝑆𝑍 <s 𝑏))
2078, 206sylbid 239 . . . 4 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → (∀𝑎𝐴 𝑎 <s 𝑏𝑍 <s 𝑏))
208207ralimdva 3156 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → (∀𝑏𝐵𝑎𝐴 𝑎 <s 𝑏 → ∀𝑏𝐵 𝑍 <s 𝑏))
2091, 208biimtrid 241 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → (∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 → ∀𝑏𝐵 𝑍 <s 𝑏))
2102093impia 1114 1 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∀𝑏𝐵 𝑍 <s 𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  {cab 2702  wne 2929  wral 3050  wrex 3059  {crab 3418  Vcvv 3461  cdif 3941  cun 3942  cin 3943  wss 3944  c0 4322  ifcif 4530  {csn 4630  cop 4636   cuni 4909   cint 4950   class class class wbr 5149  cmpt 5232   Or wor 5589   × cxp 5676  dom cdm 5678  ran crn 5679  cres 5680  cima 5681  Rel wrel 5683  Ord word 6370  Oncon0 6371  suc csuc 6373  cio 6499  Fun wfun 6543   Fn wfn 6544  wf 6545  ontowfo 6547  cfv 6549  crio 7374  1oc1o 8480  2oc2o 8481   No csur 27638   <s cslt 27639   bday cbday 27640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6374  df-on 6375  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-1o 8487  df-2o 8488  df-no 27641  df-slt 27642  df-bday 27643
This theorem is referenced by:  noetalem1  27740
  Copyright terms: Public domain W3C validator