MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noetasuplem4 Structured version   Visualization version   GIF version

Theorem noetasuplem4 27646
Description: Lemma for noeta 27653. When 𝐴 and 𝐵 are separated, then 𝑍 is a lower bound for 𝐵. Part of Theorem 5.1 of [Lipparini] p. 7-8. (Contributed by Scott Fenton, 7-Dec-2021.)
Hypotheses
Ref Expression
noetasuplem.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetasuplem.2 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
Assertion
Ref Expression
noetasuplem4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∀𝑏𝐵 𝑍 <s 𝑏)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑔,𝑥   𝑢,𝐴,𝑣,𝑦,𝑎,𝑔,𝑥   𝑆,𝑎,𝑔   𝐵,𝑎,𝑏
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑆(𝑥,𝑦,𝑣,𝑢,𝑏)   𝑍(𝑥,𝑦,𝑣,𝑢,𝑔,𝑎,𝑏)

Proof of Theorem noetasuplem4
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralcom 3257 . . 3 (∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 ↔ ∀𝑏𝐵𝑎𝐴 𝑎 <s 𝑏)
2 simplll 774 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → 𝐴 No )
3 simpllr 775 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → 𝐴 ∈ V)
4 simprl 770 . . . . . . 7 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → 𝐵 No )
54sselda 3935 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → 𝑏 No )
6 noetasuplem.1 . . . . . . 7 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
76nosupbnd2 27626 . . . . . 6 ((𝐴 No 𝐴 ∈ V ∧ 𝑏 No ) → (∀𝑎𝐴 𝑎 <s 𝑏 ↔ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆))
82, 3, 5, 7syl3anc 1373 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → (∀𝑎𝐴 𝑎 <s 𝑏 ↔ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆))
9 simpl 482 . . . . . . . . . . 11 ((𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆) → 𝑏𝐵)
10 ssel2 3930 . . . . . . . . . . 11 ((𝐵 No 𝑏𝐵) → 𝑏 No )
114, 9, 10syl2an 596 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → 𝑏 No )
12 nodmord 27563 . . . . . . . . . 10 (𝑏 No → Ord dom 𝑏)
13 ordirr 6325 . . . . . . . . . 10 (Ord dom 𝑏 → ¬ dom 𝑏 ∈ dom 𝑏)
1411, 12, 133syl 18 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → ¬ dom 𝑏 ∈ dom 𝑏)
15 ssun2 4130 . . . . . . . . . . 11 suc ( bday 𝐵) ⊆ (dom 𝑆 ∪ suc ( bday 𝐵))
16 bdayval 27558 . . . . . . . . . . . . . . 15 (𝑏 No → ( bday 𝑏) = dom 𝑏)
1711, 16syl 17 . . . . . . . . . . . . . 14 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → ( bday 𝑏) = dom 𝑏)
18 bdayfo 27587 . . . . . . . . . . . . . . . . 17 bday : No onto→On
19 fofn 6738 . . . . . . . . . . . . . . . . 17 ( bday : No onto→On → bday Fn No )
2018, 19ax-mp 5 . . . . . . . . . . . . . . . 16 bday Fn No
21 fnfvima 7169 . . . . . . . . . . . . . . . 16 (( bday Fn No 𝐵 No 𝑏𝐵) → ( bday 𝑏) ∈ ( bday 𝐵))
2220, 21mp3an1 1450 . . . . . . . . . . . . . . 15 ((𝐵 No 𝑏𝐵) → ( bday 𝑏) ∈ ( bday 𝐵))
234, 9, 22syl2an 596 . . . . . . . . . . . . . 14 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → ( bday 𝑏) ∈ ( bday 𝐵))
2417, 23eqeltrrd 2829 . . . . . . . . . . . . 13 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → dom 𝑏 ∈ ( bday 𝐵))
25 elssuni 4888 . . . . . . . . . . . . 13 (dom 𝑏 ∈ ( bday 𝐵) → dom 𝑏 ( bday 𝐵))
2624, 25syl 17 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → dom 𝑏 ( bday 𝐵))
27 nodmon 27560 . . . . . . . . . . . . 13 (𝑏 No → dom 𝑏 ∈ On)
28 imassrn 6022 . . . . . . . . . . . . . . . 16 ( bday 𝐵) ⊆ ran bday
29 forn 6739 . . . . . . . . . . . . . . . . 17 ( bday : No onto→On → ran bday = On)
3018, 29ax-mp 5 . . . . . . . . . . . . . . . 16 ran bday = On
3128, 30sseqtri 3984 . . . . . . . . . . . . . . 15 ( bday 𝐵) ⊆ On
32 ssorduni 7715 . . . . . . . . . . . . . . 15 (( bday 𝐵) ⊆ On → Ord ( bday 𝐵))
3331, 32ax-mp 5 . . . . . . . . . . . . . 14 Ord ( bday 𝐵)
34 ordsssuc 6398 . . . . . . . . . . . . . 14 ((dom 𝑏 ∈ On ∧ Ord ( bday 𝐵)) → (dom 𝑏 ( bday 𝐵) ↔ dom 𝑏 ∈ suc ( bday 𝐵)))
3533, 34mpan2 691 . . . . . . . . . . . . 13 (dom 𝑏 ∈ On → (dom 𝑏 ( bday 𝐵) ↔ dom 𝑏 ∈ suc ( bday 𝐵)))
3611, 27, 353syl 18 . . . . . . . . . . . 12 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → (dom 𝑏 ( bday 𝐵) ↔ dom 𝑏 ∈ suc ( bday 𝐵)))
3726, 36mpbid 232 . . . . . . . . . . 11 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → dom 𝑏 ∈ suc ( bday 𝐵))
3815, 37sselid 3933 . . . . . . . . . 10 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → dom 𝑏 ∈ (dom 𝑆 ∪ suc ( bday 𝐵)))
39 eleq2 2817 . . . . . . . . . 10 ((dom 𝑆 ∪ suc ( bday 𝐵)) = dom 𝑏 → (dom 𝑏 ∈ (dom 𝑆 ∪ suc ( bday 𝐵)) ↔ dom 𝑏 ∈ dom 𝑏))
4038, 39syl5ibcom 245 . . . . . . . . 9 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → ((dom 𝑆 ∪ suc ( bday 𝐵)) = dom 𝑏 → dom 𝑏 ∈ dom 𝑏))
4114, 40mtod 198 . . . . . . . 8 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → ¬ (dom 𝑆 ∪ suc ( bday 𝐵)) = dom 𝑏)
42 noetasuplem.2 . . . . . . . . . . . 12 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
4342dmeqi 5847 . . . . . . . . . . 11 dom 𝑍 = dom (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
44 dmun 5853 . . . . . . . . . . 11 dom (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) = (dom 𝑆 ∪ dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
4543, 44eqtri 2752 . . . . . . . . . 10 dom 𝑍 = (dom 𝑆 ∪ dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
46 1oex 8398 . . . . . . . . . . . . 13 1o ∈ V
4746snnz 4728 . . . . . . . . . . . 12 {1o} ≠ ∅
48 dmxp 5871 . . . . . . . . . . . 12 ({1o} ≠ ∅ → dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) = (suc ( bday 𝐵) ∖ dom 𝑆))
4947, 48ax-mp 5 . . . . . . . . . . 11 dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) = (suc ( bday 𝐵) ∖ dom 𝑆)
5049uneq2i 4116 . . . . . . . . . 10 (dom 𝑆 ∪ dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) = (dom 𝑆 ∪ (suc ( bday 𝐵) ∖ dom 𝑆))
51 undif2 4428 . . . . . . . . . 10 (dom 𝑆 ∪ (suc ( bday 𝐵) ∖ dom 𝑆)) = (dom 𝑆 ∪ suc ( bday 𝐵))
5245, 50, 513eqtri 2756 . . . . . . . . 9 dom 𝑍 = (dom 𝑆 ∪ suc ( bday 𝐵))
53 dmeq 5846 . . . . . . . . 9 (𝑍 = 𝑏 → dom 𝑍 = dom 𝑏)
5452, 53eqtr3id 2778 . . . . . . . 8 (𝑍 = 𝑏 → (dom 𝑆 ∪ suc ( bday 𝐵)) = dom 𝑏)
5541, 54nsyl 140 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → ¬ 𝑍 = 𝑏)
56 df-ne 2926 . . . . . . . 8 (𝑍𝑏 ↔ ¬ 𝑍 = 𝑏)
57 notnotr 130 . . . . . . . . . . . . . . 15 (¬ ¬ dom (𝑏 ↾ dom 𝑆) = dom 𝑆 → dom (𝑏 ↾ dom 𝑆) = dom 𝑆)
58 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆)
5958fvresd 6842 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑍 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
6042reseq1i 5926 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑍 ↾ dom 𝑆) = ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom 𝑆)
61 resundir 5945 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom 𝑆) = ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆))
62 df-res 5631 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ∩ (dom 𝑆 × V))
63 disjdifr 4424 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((suc ( bday 𝐵) ∖ dom 𝑆) ∩ dom 𝑆) = ∅
64 xpdisj1 6110 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((suc ( bday 𝐵) ∖ dom 𝑆) ∩ dom 𝑆) = ∅ → (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ∩ (dom 𝑆 × V)) = ∅)
6563, 64ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ∩ (dom 𝑆 × V)) = ∅
6662, 65eqtri 2752 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅
6766uneq2i 4116 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑆) ∪ ∅)
68 un0 4345 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 ↾ dom 𝑆) ∪ ∅) = (𝑆 ↾ dom 𝑆)
6967, 68eqtri 2752 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆)) = (𝑆 ↾ dom 𝑆)
7060, 61, 693eqtri 2756 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑍 ↾ dom 𝑆) = (𝑆 ↾ dom 𝑆)
71 simplll 774 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → (𝐴 No 𝐴 ∈ V))
726nosupno 27613 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝑆 No )
7473adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → 𝑆 No )
75 nofun 27559 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑆 No → Fun 𝑆)
7674, 75syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → Fun 𝑆)
77 funrel 6499 . . . . . . . . . . . . . . . . . . . . . . . 24 (Fun 𝑆 → Rel 𝑆)
78 resdm 5977 . . . . . . . . . . . . . . . . . . . . . . . 24 (Rel 𝑆 → (𝑆 ↾ dom 𝑆) = 𝑆)
7976, 77, 783syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑆 ↾ dom 𝑆) = 𝑆)
8070, 79eqtrid 2776 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑍 ↾ dom 𝑆) = 𝑆)
8180fveq1d 6824 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑍 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
8259, 81eqtr3d 2766 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
83 simp-4l 782 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝐴 No )
84 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝐴 ∈ V)
85 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → 𝐵 ∈ V)
8685adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝐵 ∈ V)
876, 42noetasuplem1 27643 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 No )
8883, 84, 86, 87syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝑍 No )
8988adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → 𝑍 No )
9011adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝑏 No )
9190adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → 𝑏 No )
92 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → 𝑍𝑏)
93 nosepne 27590 . . . . . . . . . . . . . . . . . . . . 21 ((𝑍 No 𝑏 No 𝑍𝑏) → (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ (𝑏 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
9489, 91, 92, 93syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ (𝑏 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
9582, 94eqnetrrd 2993 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ (𝑏 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
9658fvresd 6842 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = (𝑏 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
9795, 96neeqtrrd 2999 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ ((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
98 fveq2 6822 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 = {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} → ((𝑏 ↾ dom 𝑆)‘𝑞) = ((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
99 fveq2 6822 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 = {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} → (𝑆𝑞) = (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
10098, 99neeq12d 2986 . . . . . . . . . . . . . . . . . . . 20 (𝑞 = {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} → (((𝑏 ↾ dom 𝑆)‘𝑞) ≠ (𝑆𝑞) ↔ ((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)})))
101 df-ne 2926 . . . . . . . . . . . . . . . . . . . 20 (((𝑏 ↾ dom 𝑆)‘𝑞) ≠ (𝑆𝑞) ↔ ¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞))
102 necom 2978 . . . . . . . . . . . . . . . . . . . 20 (((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ↔ (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ ((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
103100, 101, 1023bitr3g 313 . . . . . . . . . . . . . . . . . . 19 (𝑞 = {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} → (¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞) ↔ (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ ((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)})))
104103rspcev 3577 . . . . . . . . . . . . . . . . . 18 (( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆 ∧ (𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) ≠ ((𝑏 ↾ dom 𝑆)‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)})) → ∃𝑞 ∈ dom 𝑆 ¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞))
10558, 97, 104syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ∃𝑞 ∈ dom 𝑆 ¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞))
106 rexeq 3285 . . . . . . . . . . . . . . . . 17 (dom (𝑏 ↾ dom 𝑆) = dom 𝑆 → (∃𝑞 ∈ dom (𝑏 ↾ dom 𝑆) ¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞) ↔ ∃𝑞 ∈ dom 𝑆 ¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)))
107105, 106syl5ibrcom 247 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (dom (𝑏 ↾ dom 𝑆) = dom 𝑆 → ∃𝑞 ∈ dom (𝑏 ↾ dom 𝑆) ¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)))
108 rexnal 3081 . . . . . . . . . . . . . . . 16 (∃𝑞 ∈ dom (𝑏 ↾ dom 𝑆) ¬ ((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞) ↔ ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞))
109107, 108imbitrdi 251 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (dom (𝑏 ↾ dom 𝑆) = dom 𝑆 → ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)))
11057, 109syl5 34 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (¬ ¬ dom (𝑏 ↾ dom 𝑆) = dom 𝑆 → ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)))
111110orrd 863 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (¬ dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∨ ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)))
112 nofun 27559 . . . . . . . . . . . . . . . . 17 (𝑏 No → Fun 𝑏)
113 funres 6524 . . . . . . . . . . . . . . . . 17 (Fun 𝑏 → Fun (𝑏 ↾ dom 𝑆))
11491, 112, 1133syl 18 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → Fun (𝑏 ↾ dom 𝑆))
115 eqfunfv 6970 . . . . . . . . . . . . . . . 16 ((Fun (𝑏 ↾ dom 𝑆) ∧ Fun 𝑆) → ((𝑏 ↾ dom 𝑆) = 𝑆 ↔ (dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∧ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞))))
116114, 76, 115syl2anc 584 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑏 ↾ dom 𝑆) = 𝑆 ↔ (dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∧ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞))))
117 ianor 983 . . . . . . . . . . . . . . . 16 (¬ (dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∧ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)) ↔ (¬ dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∨ ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)))
118117con1bii 356 . . . . . . . . . . . . . . 15 (¬ (¬ dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∨ ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)) ↔ (dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∧ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)))
119116, 118bitr4di 289 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑏 ↾ dom 𝑆) = 𝑆 ↔ ¬ (¬ dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∨ ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞))))
120119con2bid 354 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((¬ dom (𝑏 ↾ dom 𝑆) = dom 𝑆 ∨ ¬ ∀𝑞 ∈ dom (𝑏 ↾ dom 𝑆)((𝑏 ↾ dom 𝑆)‘𝑞) = (𝑆𝑞)) ↔ ¬ (𝑏 ↾ dom 𝑆) = 𝑆))
121111, 120mpbid 232 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ¬ (𝑏 ↾ dom 𝑆) = 𝑆)
122121pm2.21d 121 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑏 ↾ dom 𝑆) = 𝑆𝑍 <s 𝑏))
12380breq1d 5102 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑍 ↾ dom 𝑆) <s (𝑏 ↾ dom 𝑆) ↔ 𝑆 <s (𝑏 ↾ dom 𝑆)))
124 nodmon 27560 . . . . . . . . . . . . . 14 (𝑆 No → dom 𝑆 ∈ On)
12574, 124syl 17 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → dom 𝑆 ∈ On)
126 sltres 27572 . . . . . . . . . . . . 13 ((𝑍 No 𝑏 No ∧ dom 𝑆 ∈ On) → ((𝑍 ↾ dom 𝑆) <s (𝑏 ↾ dom 𝑆) → 𝑍 <s 𝑏))
12789, 91, 125, 126syl3anc 1373 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑍 ↾ dom 𝑆) <s (𝑏 ↾ dom 𝑆) → 𝑍 <s 𝑏))
128123, 127sylbird 260 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑆 <s (𝑏 ↾ dom 𝑆) → 𝑍 <s 𝑏))
129 simplrr 777 . . . . . . . . . . . . 13 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)
130129adantr 480 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)
131 noreson 27570 . . . . . . . . . . . . . . 15 ((𝑏 No ∧ dom 𝑆 ∈ On) → (𝑏 ↾ dom 𝑆) ∈ No )
13291, 125, 131syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (𝑏 ↾ dom 𝑆) ∈ No )
133 sltso 27586 . . . . . . . . . . . . . . 15 <s Or No
134 sotric 5557 . . . . . . . . . . . . . . 15 (( <s Or No ∧ ((𝑏 ↾ dom 𝑆) ∈ No 𝑆 No )) → ((𝑏 ↾ dom 𝑆) <s 𝑆 ↔ ¬ ((𝑏 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑏 ↾ dom 𝑆))))
135133, 134mpan 690 . . . . . . . . . . . . . 14 (((𝑏 ↾ dom 𝑆) ∈ No 𝑆 No ) → ((𝑏 ↾ dom 𝑆) <s 𝑆 ↔ ¬ ((𝑏 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑏 ↾ dom 𝑆))))
136132, 74, 135syl2anc 584 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑏 ↾ dom 𝑆) <s 𝑆 ↔ ¬ ((𝑏 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑏 ↾ dom 𝑆))))
137136con2bid 354 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → (((𝑏 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑏 ↾ dom 𝑆)) ↔ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆))
138130, 137mpbird 257 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → ((𝑏 ↾ dom 𝑆) = 𝑆𝑆 <s (𝑏 ↾ dom 𝑆)))
139122, 128, 138mpjaod 860 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆) → 𝑍 <s 𝑏)
14088adantr 480 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝑍 No )
14190adantr 480 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝑏 No )
142 simplr 768 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝑍𝑏)
14342fveq1i 6823 . . . . . . . . . . . . 13 (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)})
144 simp-4l 782 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (𝐴 No 𝐴 ∈ V))
145144, 72, 753syl 18 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → Fun 𝑆)
146 funfn 6512 . . . . . . . . . . . . . . 15 (Fun 𝑆𝑆 Fn dom 𝑆)
147145, 146sylib 218 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝑆 Fn dom 𝑆)
14846fconst 6710 . . . . . . . . . . . . . . . 16 ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}):(suc ( bday 𝐵) ∖ dom 𝑆)⟶{1o}
149 ffn 6652 . . . . . . . . . . . . . . . 16 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}):(suc ( bday 𝐵) ∖ dom 𝑆)⟶{1o} → ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) Fn (suc ( bday 𝐵) ∖ dom 𝑆))
150148, 149ax-mp 5 . . . . . . . . . . . . . . 15 ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) Fn (suc ( bday 𝐵) ∖ dom 𝑆)
151150a1i 11 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) Fn (suc ( bday 𝐵) ∖ dom 𝑆))
152 disjdif 4423 . . . . . . . . . . . . . . 15 (dom 𝑆 ∩ (suc ( bday 𝐵) ∖ dom 𝑆)) = ∅
153152a1i 11 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (dom 𝑆 ∩ (suc ( bday 𝐵) ∖ dom 𝑆)) = ∅)
154 necom 2978 . . . . . . . . . . . . . . . . . . 19 ((𝑍𝑝) ≠ (𝑏𝑝) ↔ (𝑏𝑝) ≠ (𝑍𝑝))
155154rabbii 3400 . . . . . . . . . . . . . . . . . 18 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} = {𝑝 ∈ On ∣ (𝑏𝑝) ≠ (𝑍𝑝)}
156155inteqi 4900 . . . . . . . . . . . . . . . . 17 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} = {𝑝 ∈ On ∣ (𝑏𝑝) ≠ (𝑍𝑝)}
157142necomd 2980 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝑏𝑍)
158 nosepssdm 27596 . . . . . . . . . . . . . . . . . 18 ((𝑏 No 𝑍 No 𝑏𝑍) → {𝑝 ∈ On ∣ (𝑏𝑝) ≠ (𝑍𝑝)} ⊆ dom 𝑏)
159141, 140, 157, 158syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → {𝑝 ∈ On ∣ (𝑏𝑝) ≠ (𝑍𝑝)} ⊆ dom 𝑏)
160156, 159eqsstrid 3974 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ⊆ dom 𝑏)
161141, 16syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → ( bday 𝑏) = dom 𝑏)
162 simplrl 776 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → 𝐵 No )
163162adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝐵 No )
164163adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝐵 No )
165 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝑏𝐵)
166165adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝑏𝐵)
167164, 166, 22syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → ( bday 𝑏) ∈ ( bday 𝐵))
168161, 167eqeltrrd 2829 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → dom 𝑏 ∈ ( bday 𝐵))
169168, 25syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → dom 𝑏 ( bday 𝐵))
170141, 27, 353syl 18 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (dom 𝑏 ( bday 𝐵) ↔ dom 𝑏 ∈ suc ( bday 𝐵)))
171169, 170mpbid 232 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → dom 𝑏 ∈ suc ( bday 𝐵))
172 nosepon 27575 . . . . . . . . . . . . . . . . . 18 ((𝑍 No 𝑏 No 𝑍𝑏) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ On)
173140, 141, 142, 172syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ On)
174 eloni 6317 . . . . . . . . . . . . . . . . 17 ( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ On → Ord {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)})
175 ordsuc 7747 . . . . . . . . . . . . . . . . . . 19 (Ord ( bday 𝐵) ↔ Ord suc ( bday 𝐵))
17633, 175mpbi 230 . . . . . . . . . . . . . . . . . 18 Ord suc ( bday 𝐵)
177 ordtr2 6352 . . . . . . . . . . . . . . . . . 18 ((Ord {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∧ Ord suc ( bday 𝐵)) → (( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ⊆ dom 𝑏 ∧ dom 𝑏 ∈ suc ( bday 𝐵)) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ suc ( bday 𝐵)))
178176, 177mpan2 691 . . . . . . . . . . . . . . . . 17 (Ord {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} → (( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ⊆ dom 𝑏 ∧ dom 𝑏 ∈ suc ( bday 𝐵)) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ suc ( bday 𝐵)))
179173, 174, 1783syl 18 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ⊆ dom 𝑏 ∧ dom 𝑏 ∈ suc ( bday 𝐵)) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ suc ( bday 𝐵)))
180160, 171, 179mp2and 699 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ suc ( bday 𝐵))
181 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)})
182144, 72, 1243syl 18 . . . . . . . . . . . . . . . . 17 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → dom 𝑆 ∈ On)
183 ontri1 6341 . . . . . . . . . . . . . . . . 17 ((dom 𝑆 ∈ On ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ On) → (dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ↔ ¬ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆))
184182, 173, 183syl2anc 584 . . . . . . . . . . . . . . . 16 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ↔ ¬ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆))
185181, 184mpbid 232 . . . . . . . . . . . . . . 15 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → ¬ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆)
186180, 185eldifd 3914 . . . . . . . . . . . . . 14 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ (suc ( bday 𝐵) ∖ dom 𝑆))
187 fvun2 6915 . . . . . . . . . . . . . 14 ((𝑆 Fn dom 𝑆 ∧ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) Fn (suc ( bday 𝐵) ∖ dom 𝑆) ∧ ((dom 𝑆 ∩ (suc ( bday 𝐵) ∖ dom 𝑆)) = ∅ ∧ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ (suc ( bday 𝐵) ∖ dom 𝑆))) → ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
188147, 151, 153, 186, 187syl112anc 1376 . . . . . . . . . . . . 13 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
189143, 188eqtrid 2776 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
19046fvconst2 7140 . . . . . . . . . . . . 13 ( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ (suc ( bday 𝐵) ∖ dom 𝑆) → (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = 1o)
191186, 190syl 17 . . . . . . . . . . . 12 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})‘ {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = 1o)
192189, 191eqtrd 2764 . . . . . . . . . . 11 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = 1o)
193 nosep1o 27591 . . . . . . . . . . 11 (((𝑍 No 𝑏 No 𝑍𝑏) ∧ (𝑍 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) = 1o) → 𝑍 <s 𝑏)
194140, 141, 142, 192, 193syl31anc 1375 . . . . . . . . . 10 ((((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) ∧ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}) → 𝑍 <s 𝑏)
195 simpr 484 . . . . . . . . . . . . 13 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝑍𝑏)
19688, 90, 195, 172syl3anc 1373 . . . . . . . . . . . 12 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ On)
197196, 174syl 17 . . . . . . . . . . 11 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → Ord {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)})
198 nodmord 27563 . . . . . . . . . . . 12 (𝑆 No → Ord dom 𝑆)
19971, 72, 1983syl 18 . . . . . . . . . . 11 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → Ord dom 𝑆)
200 ordtri2or 6407 . . . . . . . . . . 11 ((Ord {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∧ Ord dom 𝑆) → ( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆 ∨ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
201197, 199, 200syl2anc 584 . . . . . . . . . 10 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → ( {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)} ∈ dom 𝑆 ∨ dom 𝑆 {𝑝 ∈ On ∣ (𝑍𝑝) ≠ (𝑏𝑝)}))
202139, 194, 201mpjaodan 960 . . . . . . . . 9 (((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) ∧ 𝑍𝑏) → 𝑍 <s 𝑏)
203202ex 412 . . . . . . . 8 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → (𝑍𝑏𝑍 <s 𝑏))
20456, 203biimtrrid 243 . . . . . . 7 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → (¬ 𝑍 = 𝑏𝑍 <s 𝑏))
20555, 204mpd 15 . . . . . 6 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ (𝑏𝐵 ∧ ¬ (𝑏 ↾ dom 𝑆) <s 𝑆)) → 𝑍 <s 𝑏)
206205expr 456 . . . . 5 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → (¬ (𝑏 ↾ dom 𝑆) <s 𝑆𝑍 <s 𝑏))
2078, 206sylbid 240 . . . 4 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) ∧ 𝑏𝐵) → (∀𝑎𝐴 𝑎 <s 𝑏𝑍 <s 𝑏))
208207ralimdva 3141 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → (∀𝑏𝐵𝑎𝐴 𝑎 <s 𝑏 → ∀𝑏𝐵 𝑍 <s 𝑏))
2091, 208biimtrid 242 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → (∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 → ∀𝑏𝐵 𝑍 <s 𝑏))
2102093impia 1117 1 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ∀𝑏𝐵 𝑍 <s 𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cdif 3900  cun 3901  cin 3902  wss 3903  c0 4284  ifcif 4476  {csn 4577  cop 4583   cuni 4858   cint 4896   class class class wbr 5092  cmpt 5173   Or wor 5526   × cxp 5617  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Rel wrel 5624  Ord word 6306  Oncon0 6307  suc csuc 6309  cio 6436  Fun wfun 6476   Fn wfn 6477  wf 6478  ontowfo 6480  cfv 6482  crio 7305  1oc1o 8381  2oc2o 8382   No csur 27549   <s cslt 27550   bday cbday 27551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-1o 8388  df-2o 8389  df-no 27552  df-slt 27553  df-bday 27554
This theorem is referenced by:  noetalem1  27651
  Copyright terms: Public domain W3C validator