Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon1ad | Structured version Visualization version GIF version |
Description: Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon1ad.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon1ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1ad.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) | |
2 | 1 | necon3ad 2955 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ ¬ 𝜓)) |
3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: prnebg 4783 fr0 5559 sofld 6079 onmindif2 7634 suppss 7981 suppssOLD 7982 suppss2 7987 uniinqs 8544 dfac5lem4 9813 uzwo 12580 seqf1olem1 13690 seqf1olem2 13691 hashnncl 14009 pceq0 16500 vdwmc2 16608 odcau 19124 islss 20111 fidomndrnglem 20491 obs2ss 20846 obslbs 20847 dsmmacl 20858 mvrf1 21104 mpfrcl 21205 mhpvarcl 21248 regr1lem2 22799 iccpnfhmeo 24014 itg10a 24780 dvlip 25062 deg1ge 25168 elply2 25262 coeeulem 25290 dgrle 25309 coemullem 25316 basellem2 26136 perfectlem2 26283 lgsabs1 26389 lnon0 29061 atsseq 30610 disjif2 30821 prmidl0 31528 cvmseu 33138 nosepon 33795 noextenddif 33798 matunitlindf 35702 poimirlem2 35706 poimirlem18 35722 poimirlem21 35725 itg2addnclem 35755 lsatcmp 36944 lsatcmp2 36945 ltrnnid 38077 trlatn0 38113 cdlemh 38758 dochlkr 39326 perfectALTVlem2 45062 |
Copyright terms: Public domain | W3C validator |