MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1ad Structured version   Visualization version   GIF version

Theorem necon1ad 2942
Description: Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Wolf Lammen, 23-Nov-2019.)
Hypothesis
Ref Expression
necon1ad.1 (𝜑 → (¬ 𝜓𝐴 = 𝐵))
Assertion
Ref Expression
necon1ad (𝜑 → (𝐴𝐵𝜓))

Proof of Theorem necon1ad
StepHypRef Expression
1 necon1ad.1 . . 3 (𝜑 → (¬ 𝜓𝐴 = 𝐵))
21necon3ad 2938 . 2 (𝜑 → (𝐴𝐵 → ¬ ¬ 𝜓))
3 notnotr 130 . 2 (¬ ¬ 𝜓𝜓)
42, 3syl6 35 1 (𝜑 → (𝐴𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2926
This theorem is referenced by:  prnebg  4810  fr0  5601  sofld  6140  onmindif2  7747  suppss  8134  suppss2  8140  uniinqs  8731  dfac5lem4  10039  dfac5lem4OLD  10041  uzwo  12830  seqf1olem1  13966  seqf1olem2  13967  hashnncl  14291  pceq0  16801  vdwmc2  16909  odcau  19501  fidomndrnglem  20675  islss  20855  obs2ss  21654  obslbs  21655  dsmmacl  21666  mvrf1  21911  mpfrcl  22008  mhpvarcl  22051  regr1lem2  23643  iccpnfhmeo  24859  itg10a  25627  dvlip  25914  deg1ge  26019  elply2  26117  coeeulem  26145  dgrle  26164  coemullem  26171  basellem2  27008  perfectlem2  27157  lgsabs1  27263  nosepon  27593  noextenddif  27596  lnon0  30760  atsseq  32309  disjif2  32543  prmidl0  33397  cvmseu  35248  matunitlindf  37597  poimirlem2  37601  poimirlem18  37617  poimirlem21  37620  itg2addnclem  37650  lsatcmp  38981  lsatcmp2  38982  ltrnnid  40115  trlatn0  40151  cdlemh  40796  dochlkr  41364  perfectALTVlem2  47707
  Copyright terms: Public domain W3C validator