![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1ad | Structured version Visualization version GIF version |
Description: Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon1ad.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon1ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1ad.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) | |
2 | 1 | necon3ad 2950 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ ¬ 𝜓)) |
3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1536 ≠ wne 2937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2938 |
This theorem is referenced by: prnebg 4860 fr0 5666 sofld 6208 onmindif2 7826 suppss 8217 suppss2 8223 uniinqs 8835 dfac5lem4 10163 dfac5lem4OLD 10165 uzwo 12950 seqf1olem1 14078 seqf1olem2 14079 hashnncl 14401 pceq0 16904 vdwmc2 17012 odcau 19636 fidomndrnglem 20789 islss 20949 obs2ss 21766 obslbs 21767 dsmmacl 21778 mvrf1 22023 mpfrcl 22126 mhpvarcl 22169 regr1lem2 23763 iccpnfhmeo 24989 itg10a 25759 dvlip 26046 deg1ge 26151 elply2 26249 coeeulem 26277 dgrle 26296 coemullem 26303 basellem2 27139 perfectlem2 27288 lgsabs1 27394 nosepon 27724 noextenddif 27727 lnon0 30826 atsseq 32375 disjif2 32600 prmidl0 33457 cvmseu 35260 matunitlindf 37604 poimirlem2 37608 poimirlem18 37624 poimirlem21 37627 itg2addnclem 37657 lsatcmp 38984 lsatcmp2 38985 ltrnnid 40118 trlatn0 40154 cdlemh 40799 dochlkr 41367 perfectALTVlem2 47646 |
Copyright terms: Public domain | W3C validator |