| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1ad.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| necon1ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon1ad.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) | |
| 2 | 1 | necon3ad 2938 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ ¬ 𝜓)) |
| 3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
| 4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: prnebg 4820 fr0 5616 sofld 6160 onmindif2 7783 suppss 8173 suppss2 8179 uniinqs 8770 dfac5lem4 10079 dfac5lem4OLD 10081 uzwo 12870 seqf1olem1 14006 seqf1olem2 14007 hashnncl 14331 pceq0 16842 vdwmc2 16950 odcau 19534 fidomndrnglem 20681 islss 20840 obs2ss 21638 obslbs 21639 dsmmacl 21650 mvrf1 21895 mpfrcl 21992 mhpvarcl 22035 regr1lem2 23627 iccpnfhmeo 24843 itg10a 25611 dvlip 25898 deg1ge 26003 elply2 26101 coeeulem 26129 dgrle 26148 coemullem 26155 basellem2 26992 perfectlem2 27141 lgsabs1 27247 nosepon 27577 noextenddif 27580 lnon0 30727 atsseq 32276 disjif2 32510 prmidl0 33421 cvmseu 35263 matunitlindf 37612 poimirlem2 37616 poimirlem18 37632 poimirlem21 37635 itg2addnclem 37665 lsatcmp 38996 lsatcmp2 38997 ltrnnid 40130 trlatn0 40166 cdlemh 40811 dochlkr 41379 perfectALTVlem2 47723 |
| Copyright terms: Public domain | W3C validator |