| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1ad.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| necon1ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon1ad.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) | |
| 2 | 1 | necon3ad 2939 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ ¬ 𝜓)) |
| 3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
| 4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: prnebg 4823 fr0 5619 sofld 6163 onmindif2 7786 suppss 8176 suppss2 8182 uniinqs 8773 dfac5lem4 10086 dfac5lem4OLD 10088 uzwo 12877 seqf1olem1 14013 seqf1olem2 14014 hashnncl 14338 pceq0 16849 vdwmc2 16957 odcau 19541 fidomndrnglem 20688 islss 20847 obs2ss 21645 obslbs 21646 dsmmacl 21657 mvrf1 21902 mpfrcl 21999 mhpvarcl 22042 regr1lem2 23634 iccpnfhmeo 24850 itg10a 25618 dvlip 25905 deg1ge 26010 elply2 26108 coeeulem 26136 dgrle 26155 coemullem 26162 basellem2 26999 perfectlem2 27148 lgsabs1 27254 nosepon 27584 noextenddif 27587 lnon0 30734 atsseq 32283 disjif2 32517 prmidl0 33428 cvmseu 35270 matunitlindf 37619 poimirlem2 37623 poimirlem18 37639 poimirlem21 37642 itg2addnclem 37672 lsatcmp 39003 lsatcmp2 39004 ltrnnid 40137 trlatn0 40173 cdlemh 40818 dochlkr 41386 perfectALTVlem2 47727 |
| Copyright terms: Public domain | W3C validator |