MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1ad Structured version   Visualization version   GIF version

Theorem necon1ad 2945
Description: Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Wolf Lammen, 23-Nov-2019.)
Hypothesis
Ref Expression
necon1ad.1 (𝜑 → (¬ 𝜓𝐴 = 𝐵))
Assertion
Ref Expression
necon1ad (𝜑 → (𝐴𝐵𝜓))

Proof of Theorem necon1ad
StepHypRef Expression
1 necon1ad.1 . . 3 (𝜑 → (¬ 𝜓𝐴 = 𝐵))
21necon3ad 2941 . 2 (𝜑 → (𝐴𝐵 → ¬ ¬ 𝜓))
3 notnotr 130 . 2 (¬ ¬ 𝜓𝜓)
42, 3syl6 35 1 (𝜑 → (𝐴𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wne 2928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2929
This theorem is referenced by:  prnebg  4808  fr0  5594  sofld  6134  onmindif2  7740  suppss  8124  suppss2  8130  uniinqs  8721  dfac5lem4  10014  dfac5lem4OLD  10016  uzwo  12806  seqf1olem1  13945  seqf1olem2  13946  hashnncl  14270  pceq0  16780  vdwmc2  16888  odcau  19514  fidomndrnglem  20685  islss  20865  obs2ss  21664  obslbs  21665  dsmmacl  21676  mvrf1  21921  mpfrcl  22018  mhpvarcl  22061  regr1lem2  23653  iccpnfhmeo  24868  itg10a  25636  dvlip  25923  deg1ge  26028  elply2  26126  coeeulem  26154  dgrle  26173  coemullem  26180  basellem2  27017  perfectlem2  27166  lgsabs1  27272  nosepon  27602  noextenddif  27605  lnon0  30773  atsseq  32322  disjif2  32556  prmidl0  33410  cvmseu  35308  matunitlindf  37657  poimirlem2  37661  poimirlem18  37677  poimirlem21  37680  itg2addnclem  37710  lsatcmp  39041  lsatcmp2  39042  ltrnnid  40174  trlatn0  40210  cdlemh  40855  dochlkr  41423  perfectALTVlem2  47752
  Copyright terms: Public domain W3C validator