| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1ad.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| necon1ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon1ad.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) | |
| 2 | 1 | necon3ad 2945 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ ¬ 𝜓)) |
| 3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
| 4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2933 |
| This theorem is referenced by: prnebg 4832 fr0 5632 sofld 6176 onmindif2 7799 suppss 8191 suppss2 8197 uniinqs 8809 dfac5lem4 10138 dfac5lem4OLD 10140 uzwo 12925 seqf1olem1 14057 seqf1olem2 14058 hashnncl 14382 pceq0 16889 vdwmc2 16997 odcau 19583 fidomndrnglem 20730 islss 20889 obs2ss 21687 obslbs 21688 dsmmacl 21699 mvrf1 21944 mpfrcl 22041 mhpvarcl 22084 regr1lem2 23676 iccpnfhmeo 24892 itg10a 25661 dvlip 25948 deg1ge 26053 elply2 26151 coeeulem 26179 dgrle 26198 coemullem 26205 basellem2 27042 perfectlem2 27191 lgsabs1 27297 nosepon 27627 noextenddif 27630 lnon0 30725 atsseq 32274 disjif2 32508 prmidl0 33411 cvmseu 35244 matunitlindf 37588 poimirlem2 37592 poimirlem18 37608 poimirlem21 37611 itg2addnclem 37641 lsatcmp 38967 lsatcmp2 38968 ltrnnid 40101 trlatn0 40137 cdlemh 40782 dochlkr 41350 perfectALTVlem2 47684 |
| Copyright terms: Public domain | W3C validator |