| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1ad.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| necon1ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon1ad.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) | |
| 2 | 1 | necon3ad 2938 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ ¬ 𝜓)) |
| 3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
| 4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: prnebg 4810 fr0 5601 sofld 6140 onmindif2 7747 suppss 8134 suppss2 8140 uniinqs 8731 dfac5lem4 10039 dfac5lem4OLD 10041 uzwo 12830 seqf1olem1 13966 seqf1olem2 13967 hashnncl 14291 pceq0 16801 vdwmc2 16909 odcau 19501 fidomndrnglem 20675 islss 20855 obs2ss 21654 obslbs 21655 dsmmacl 21666 mvrf1 21911 mpfrcl 22008 mhpvarcl 22051 regr1lem2 23643 iccpnfhmeo 24859 itg10a 25627 dvlip 25914 deg1ge 26019 elply2 26117 coeeulem 26145 dgrle 26164 coemullem 26171 basellem2 27008 perfectlem2 27157 lgsabs1 27263 nosepon 27593 noextenddif 27596 lnon0 30760 atsseq 32309 disjif2 32543 prmidl0 33397 cvmseu 35248 matunitlindf 37597 poimirlem2 37601 poimirlem18 37617 poimirlem21 37620 itg2addnclem 37650 lsatcmp 38981 lsatcmp2 38982 ltrnnid 40115 trlatn0 40151 cdlemh 40796 dochlkr 41364 perfectALTVlem2 47707 |
| Copyright terms: Public domain | W3C validator |