![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1ad | Structured version Visualization version GIF version |
Description: Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon1ad.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon1ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1ad.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) | |
2 | 1 | necon3ad 2953 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ ¬ 𝜓)) |
3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2941 |
This theorem is referenced by: prnebg 4856 fr0 5655 sofld 6186 onmindif2 7794 suppss 8178 suppssOLD 8179 suppss2 8184 uniinqs 8790 dfac5lem4 10120 uzwo 12894 seqf1olem1 14006 seqf1olem2 14007 hashnncl 14325 pceq0 16803 vdwmc2 16911 odcau 19471 islss 20544 fidomndrnglem 20924 obs2ss 21283 obslbs 21284 dsmmacl 21295 mvrf1 21544 mpfrcl 21647 mhpvarcl 21690 regr1lem2 23243 iccpnfhmeo 24460 itg10a 25227 dvlip 25509 deg1ge 25615 elply2 25709 coeeulem 25737 dgrle 25756 coemullem 25763 basellem2 26583 perfectlem2 26730 lgsabs1 26836 nosepon 27165 noextenddif 27168 lnon0 30046 atsseq 31595 disjif2 31807 prmidl0 32564 cvmseu 34262 matunitlindf 36481 poimirlem2 36485 poimirlem18 36501 poimirlem21 36504 itg2addnclem 36534 lsatcmp 37868 lsatcmp2 37869 ltrnnid 39002 trlatn0 39038 cdlemh 39683 dochlkr 40251 perfectALTVlem2 46380 |
Copyright terms: Public domain | W3C validator |