![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1ad | Structured version Visualization version GIF version |
Description: Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon1ad.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon1ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1ad.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) | |
2 | 1 | necon3ad 2954 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ ¬ 𝜓)) |
3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2942 |
This theorem is referenced by: prnebg 4857 fr0 5656 sofld 6187 onmindif2 7795 suppss 8179 suppssOLD 8180 suppss2 8185 uniinqs 8791 dfac5lem4 10121 uzwo 12895 seqf1olem1 14007 seqf1olem2 14008 hashnncl 14326 pceq0 16804 vdwmc2 16912 odcau 19472 islss 20545 fidomndrnglem 20925 obs2ss 21284 obslbs 21285 dsmmacl 21296 mvrf1 21545 mpfrcl 21648 mhpvarcl 21691 regr1lem2 23244 iccpnfhmeo 24461 itg10a 25228 dvlip 25510 deg1ge 25616 elply2 25710 coeeulem 25738 dgrle 25757 coemullem 25764 basellem2 26586 perfectlem2 26733 lgsabs1 26839 nosepon 27168 noextenddif 27171 lnon0 30051 atsseq 31600 disjif2 31812 prmidl0 32569 cvmseu 34267 matunitlindf 36486 poimirlem2 36490 poimirlem18 36506 poimirlem21 36509 itg2addnclem 36539 lsatcmp 37873 lsatcmp2 37874 ltrnnid 39007 trlatn0 39043 cdlemh 39688 dochlkr 40256 perfectALTVlem2 46390 |
Copyright terms: Public domain | W3C validator |