![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1ad | Structured version Visualization version GIF version |
Description: Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon1ad.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon1ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1ad.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) | |
2 | 1 | necon3ad 2959 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ ¬ 𝜓)) |
3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: prnebg 4880 fr0 5678 sofld 6218 onmindif2 7843 suppss 8235 suppss2 8241 uniinqs 8855 dfac5lem4 10195 dfac5lem4OLD 10197 uzwo 12976 seqf1olem1 14092 seqf1olem2 14093 hashnncl 14415 pceq0 16918 vdwmc2 17026 odcau 19646 fidomndrnglem 20795 islss 20955 obs2ss 21772 obslbs 21773 dsmmacl 21784 mvrf1 22029 mpfrcl 22132 mhpvarcl 22175 regr1lem2 23769 iccpnfhmeo 24995 itg10a 25765 dvlip 26052 deg1ge 26157 elply2 26255 coeeulem 26283 dgrle 26302 coemullem 26309 basellem2 27143 perfectlem2 27292 lgsabs1 27398 nosepon 27728 noextenddif 27731 lnon0 30830 atsseq 32379 disjif2 32603 prmidl0 33443 cvmseu 35244 matunitlindf 37578 poimirlem2 37582 poimirlem18 37598 poimirlem21 37601 itg2addnclem 37631 lsatcmp 38959 lsatcmp2 38960 ltrnnid 40093 trlatn0 40129 cdlemh 40774 dochlkr 41342 perfectALTVlem2 47596 |
Copyright terms: Public domain | W3C validator |