Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon1ad | Structured version Visualization version GIF version |
Description: Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon1ad.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon1ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1ad.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) | |
2 | 1 | necon3ad 2957 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ ¬ 𝜓)) |
3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2945 |
This theorem is referenced by: prnebg 4787 fr0 5569 sofld 6095 onmindif2 7666 suppss 8019 suppssOLD 8020 suppss2 8025 uniinqs 8595 dfac5lem4 9891 uzwo 12660 seqf1olem1 13771 seqf1olem2 13772 hashnncl 14090 pceq0 16581 vdwmc2 16689 odcau 19218 islss 20205 fidomndrnglem 20587 obs2ss 20945 obslbs 20946 dsmmacl 20957 mvrf1 21203 mpfrcl 21304 mhpvarcl 21347 regr1lem2 22900 iccpnfhmeo 24117 itg10a 24884 dvlip 25166 deg1ge 25272 elply2 25366 coeeulem 25394 dgrle 25413 coemullem 25420 basellem2 26240 perfectlem2 26387 lgsabs1 26493 lnon0 29169 atsseq 30718 disjif2 30929 prmidl0 31635 cvmseu 33247 nosepon 33877 noextenddif 33880 matunitlindf 35784 poimirlem2 35788 poimirlem18 35804 poimirlem21 35807 itg2addnclem 35837 lsatcmp 37024 lsatcmp2 37025 ltrnnid 38157 trlatn0 38193 cdlemh 38838 dochlkr 39406 perfectALTVlem2 45185 |
Copyright terms: Public domain | W3C validator |