![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1ad | Structured version Visualization version GIF version |
Description: Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon1ad.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon1ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1ad.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) | |
2 | 1 | necon3ad 2951 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ ¬ 𝜓)) |
3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2939 |
This theorem is referenced by: prnebg 4855 fr0 5654 sofld 6185 onmindif2 7797 suppss 8181 suppssOLD 8182 suppss2 8187 uniinqs 8793 dfac5lem4 10123 uzwo 12899 seqf1olem1 14011 seqf1olem2 14012 hashnncl 14330 pceq0 16808 vdwmc2 16916 odcau 19513 islss 20689 fidomndrnglem 21125 obs2ss 21503 obslbs 21504 dsmmacl 21515 mvrf1 21764 mpfrcl 21867 mhpvarcl 21910 regr1lem2 23464 iccpnfhmeo 24690 itg10a 25460 dvlip 25745 deg1ge 25851 elply2 25945 coeeulem 25973 dgrle 25992 coemullem 25999 basellem2 26822 perfectlem2 26969 lgsabs1 27075 nosepon 27404 noextenddif 27407 lnon0 30318 atsseq 31867 disjif2 32079 prmidl0 32843 cvmseu 34565 matunitlindf 36789 poimirlem2 36793 poimirlem18 36809 poimirlem21 36812 itg2addnclem 36842 lsatcmp 38176 lsatcmp2 38177 ltrnnid 39310 trlatn0 39346 cdlemh 39991 dochlkr 40559 perfectALTVlem2 46688 |
Copyright terms: Public domain | W3C validator |