![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1ad | Structured version Visualization version GIF version |
Description: Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon1ad.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon1ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1ad.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) | |
2 | 1 | necon3ad 2984 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ ¬ 𝜓)) |
3 | notnotr 128 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1653 ≠ wne 2971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-ne 2972 |
This theorem is referenced by: prnebg 4574 fr0 5291 sofld 5798 onmindif2 7246 suppss 7563 suppss2 7567 uniinqs 8065 dfac5lem4 9235 uzwo 11996 seqf1olem1 13094 seqf1olem2 13095 hashnncl 13407 pceq0 15908 vdwmc2 16016 odcau 18332 islss 19253 fidomndrnglem 19629 mvrf1 19748 mpfrcl 19840 obs2ss 20398 obslbs 20399 dsmmacl 20410 regr1lem2 21872 iccpnfhmeo 23072 itg10a 23818 dvlip 24097 deg1ge 24199 elply2 24293 coeeulem 24321 dgrle 24340 coemullem 24347 basellem2 25160 perfectlem2 25307 lgsabs1 25413 lnon0 28178 atsseq 29731 disjif2 29911 cvmseu 31775 nosepon 32331 noextenddif 32334 matunitlindf 33896 poimirlem2 33900 poimirlem18 33916 poimirlem21 33919 itg2addnclem 33949 lsatcmp 35024 lsatcmp2 35025 ltrnnid 36157 trlatn0 36193 cdlemh 36838 dochlkr 37406 perfectALTVlem2 42413 |
Copyright terms: Public domain | W3C validator |