![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1ad | Structured version Visualization version GIF version |
Description: Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon1ad.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon1ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1ad.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) | |
2 | 1 | necon3ad 2949 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ ¬ 𝜓)) |
3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ≠ wne 2936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2937 |
This theorem is referenced by: prnebg 4853 fr0 5652 sofld 6186 onmindif2 7805 suppss 8193 suppssOLD 8194 suppss2 8200 uniinqs 8810 dfac5lem4 10144 uzwo 12920 seqf1olem1 14033 seqf1olem2 14034 hashnncl 14352 pceq0 16834 vdwmc2 16942 odcau 19553 islss 20812 fidomndrnglem 21254 obs2ss 21657 obslbs 21658 dsmmacl 21669 mvrf1 21922 mpfrcl 22025 mhpvarcl 22066 regr1lem2 23638 iccpnfhmeo 24864 itg10a 25634 dvlip 25920 deg1ge 26028 elply2 26124 coeeulem 26152 dgrle 26171 coemullem 26178 basellem2 27008 perfectlem2 27157 lgsabs1 27263 nosepon 27592 noextenddif 27595 lnon0 30602 atsseq 32151 disjif2 32365 prmidl0 33161 cvmseu 34881 matunitlindf 37086 poimirlem2 37090 poimirlem18 37106 poimirlem21 37109 itg2addnclem 37139 lsatcmp 38470 lsatcmp2 38471 ltrnnid 39604 trlatn0 39640 cdlemh 40285 dochlkr 40853 perfectALTVlem2 47053 |
Copyright terms: Public domain | W3C validator |