| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1ad.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| necon1ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon1ad.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) | |
| 2 | 1 | necon3ad 2942 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ ¬ 𝜓)) |
| 3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
| 4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2930 |
| This theorem is referenced by: prnebg 4807 fr0 5597 sofld 6139 onmindif2 7746 suppss 8130 suppss2 8136 uniinqs 8727 dfac5lem4 10024 dfac5lem4OLD 10026 uzwo 12811 seqf1olem1 13950 seqf1olem2 13951 hashnncl 14275 pceq0 16785 vdwmc2 16893 odcau 19518 fidomndrnglem 20689 islss 20869 obs2ss 21668 obslbs 21669 dsmmacl 21680 mvrf1 21924 mpfrcl 22021 mhpvarcl 22064 regr1lem2 23656 iccpnfhmeo 24871 itg10a 25639 dvlip 25926 deg1ge 26031 elply2 26129 coeeulem 26157 dgrle 26176 coemullem 26183 basellem2 27020 perfectlem2 27169 lgsabs1 27275 nosepon 27605 noextenddif 27608 lnon0 30780 atsseq 32329 disjif2 32563 prmidl0 33422 cvmseu 35341 matunitlindf 37678 poimirlem2 37682 poimirlem18 37698 poimirlem21 37701 itg2addnclem 37731 lsatcmp 39122 lsatcmp2 39123 ltrnnid 40255 trlatn0 40291 cdlemh 40936 dochlkr 41504 perfectALTVlem2 47846 |
| Copyright terms: Public domain | W3C validator |