| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1ad.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| necon1ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon1ad.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 = 𝐵)) | |
| 2 | 1 | necon3ad 2941 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ ¬ 𝜓)) |
| 3 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜓 → 𝜓) | |
| 4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: prnebg 4808 fr0 5594 sofld 6134 onmindif2 7740 suppss 8124 suppss2 8130 uniinqs 8721 dfac5lem4 10014 dfac5lem4OLD 10016 uzwo 12806 seqf1olem1 13945 seqf1olem2 13946 hashnncl 14270 pceq0 16780 vdwmc2 16888 odcau 19514 fidomndrnglem 20685 islss 20865 obs2ss 21664 obslbs 21665 dsmmacl 21676 mvrf1 21921 mpfrcl 22018 mhpvarcl 22061 regr1lem2 23653 iccpnfhmeo 24868 itg10a 25636 dvlip 25923 deg1ge 26028 elply2 26126 coeeulem 26154 dgrle 26173 coemullem 26180 basellem2 27017 perfectlem2 27166 lgsabs1 27272 nosepon 27602 noextenddif 27605 lnon0 30773 atsseq 32322 disjif2 32556 prmidl0 33410 cvmseu 35308 matunitlindf 37657 poimirlem2 37661 poimirlem18 37677 poimirlem21 37680 itg2addnclem 37710 lsatcmp 39041 lsatcmp2 39042 ltrnnid 40174 trlatn0 40210 cdlemh 40855 dochlkr 41423 perfectALTVlem2 47752 |
| Copyright terms: Public domain | W3C validator |