Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zfregs2VD Structured version   Visualization version   GIF version

Theorem zfregs2VD 44837
Description: Virtual deduction proof of zfregs2 9693. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
zfregs2VD (𝐴 ≠ ∅ → ¬ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem zfregs2VD
StepHypRef Expression
1 idn1 44571 . . . . . . . 8 (   𝐴 ≠ ∅   ▶   𝐴 ≠ ∅   )
2 zfregs 9692 . . . . . . . 8 (𝐴 ≠ ∅ → ∃𝑥𝐴 (𝑥𝐴) = ∅)
31, 2e1a 44624 . . . . . . 7 (   𝐴 ≠ ∅   ▶   𝑥𝐴 (𝑥𝐴) = ∅   )
4 incom 4175 . . . . . . . . 9 (𝑥𝐴) = (𝐴𝑥)
54eqeq1i 2735 . . . . . . . 8 ((𝑥𝐴) = ∅ ↔ (𝐴𝑥) = ∅)
65rexbii 3077 . . . . . . 7 (∃𝑥𝐴 (𝑥𝐴) = ∅ ↔ ∃𝑥𝐴 (𝐴𝑥) = ∅)
73, 6e1bi 44626 . . . . . 6 (   𝐴 ≠ ∅   ▶   𝑥𝐴 (𝐴𝑥) = ∅   )
8 disj1 4418 . . . . . . 7 ((𝐴𝑥) = ∅ ↔ ∀𝑦(𝑦𝐴 → ¬ 𝑦𝑥))
98rexbii 3077 . . . . . 6 (∃𝑥𝐴 (𝐴𝑥) = ∅ ↔ ∃𝑥𝐴𝑦(𝑦𝐴 → ¬ 𝑦𝑥))
107, 9e1bi 44626 . . . . 5 (   𝐴 ≠ ∅   ▶   𝑥𝐴𝑦(𝑦𝐴 → ¬ 𝑦𝑥)   )
11 alinexa 1843 . . . . . 6 (∀𝑦(𝑦𝐴 → ¬ 𝑦𝑥) ↔ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
1211rexbii 3077 . . . . 5 (∃𝑥𝐴𝑦(𝑦𝐴 → ¬ 𝑦𝑥) ↔ ∃𝑥𝐴 ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
1310, 12e1bi 44626 . . . 4 (   𝐴 ≠ ∅   ▶   𝑥𝐴 ¬ ∃𝑦(𝑦𝐴𝑦𝑥)   )
14 dfrex2 3057 . . . 4 (∃𝑥𝐴 ¬ ∃𝑦(𝑦𝐴𝑦𝑥) ↔ ¬ ∀𝑥𝐴 ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
1513, 14e1bi 44626 . . 3 (   𝐴 ≠ ∅   ▶    ¬ ∀𝑥𝐴 ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥)   )
16 notnotr 130 . . . . . 6 (¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥) → ∃𝑦(𝑦𝐴𝑦𝑥))
17 notnot 142 . . . . . 6 (∃𝑦(𝑦𝐴𝑦𝑥) → ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
1816, 17impbii 209 . . . . 5 (¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥) ↔ ∃𝑦(𝑦𝐴𝑦𝑥))
1918ralbii 3076 . . . 4 (∀𝑥𝐴 ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥) ↔ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥))
2019notbii 320 . . 3 (¬ ∀𝑥𝐴 ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥) ↔ ¬ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥))
2115, 20e1bi 44626 . 2 (   𝐴 ≠ ∅   ▶    ¬ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥)   )
2221in1 44568 1 (𝐴 ≠ ∅ → ¬ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  cin 3916  c0 4299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-vd1 44567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator