![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zfregs2VD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of zfregs2 9756. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
zfregs2VD | ⊢ (𝐴 ≠ ∅ → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idn1 44078 | . . . . . . . 8 ⊢ ( 𝐴 ≠ ∅ ▶ 𝐴 ≠ ∅ ) | |
2 | zfregs 9755 | . . . . . . . 8 ⊢ (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) | |
3 | 1, 2 | e1a 44131 | . . . . . . 7 ⊢ ( 𝐴 ≠ ∅ ▶ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅ ) |
4 | incom 4195 | . . . . . . . . 9 ⊢ (𝑥 ∩ 𝐴) = (𝐴 ∩ 𝑥) | |
5 | 4 | eqeq1i 2730 | . . . . . . . 8 ⊢ ((𝑥 ∩ 𝐴) = ∅ ↔ (𝐴 ∩ 𝑥) = ∅) |
6 | 5 | rexbii 3084 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅ ↔ ∃𝑥 ∈ 𝐴 (𝐴 ∩ 𝑥) = ∅) |
7 | 3, 6 | e1bi 44133 | . . . . . 6 ⊢ ( 𝐴 ≠ ∅ ▶ ∃𝑥 ∈ 𝐴 (𝐴 ∩ 𝑥) = ∅ ) |
8 | disj1 4446 | . . . . . . 7 ⊢ ((𝐴 ∩ 𝑥) = ∅ ↔ ∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥)) | |
9 | 8 | rexbii 3084 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 (𝐴 ∩ 𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥)) |
10 | 7, 9 | e1bi 44133 | . . . . 5 ⊢ ( 𝐴 ≠ ∅ ▶ ∃𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥) ) |
11 | alinexa 1837 | . . . . . 6 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥) ↔ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
12 | 11 | rexbii 3084 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
13 | 10, 12 | e1bi 44133 | . . . 4 ⊢ ( 𝐴 ≠ ∅ ▶ ∃𝑥 ∈ 𝐴 ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ) |
14 | dfrex2 3063 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
15 | 13, 14 | e1bi 44133 | . . 3 ⊢ ( 𝐴 ≠ ∅ ▶ ¬ ∀𝑥 ∈ 𝐴 ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ) |
16 | notnotr 130 | . . . . . 6 ⊢ (¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
17 | notnot 142 | . . . . . 6 ⊢ (∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
18 | 16, 17 | impbii 208 | . . . . 5 ⊢ (¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
19 | 18 | ralbii 3083 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
20 | 19 | notbii 319 | . . 3 ⊢ (¬ ∀𝑥 ∈ 𝐴 ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
21 | 15, 20 | e1bi 44133 | . 2 ⊢ ( 𝐴 ≠ ∅ ▶ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ) |
22 | 21 | in1 44075 | 1 ⊢ (𝐴 ≠ ∅ → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∀wal 1531 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2930 ∀wral 3051 ∃wrex 3060 ∩ cin 3938 ∅c0 4318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pr 5423 ax-un 7738 ax-reg 9615 ax-inf2 9664 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7419 df-om 7869 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-vd1 44074 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |