| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zfregs2VD | Structured version Visualization version GIF version | ||
| Description: Virtual deduction proof of zfregs2 9747. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| zfregs2VD | ⊢ (𝐴 ≠ ∅ → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn1 44599 | . . . . . . . 8 ⊢ ( 𝐴 ≠ ∅ ▶ 𝐴 ≠ ∅ ) | |
| 2 | zfregs 9746 | . . . . . . . 8 ⊢ (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) | |
| 3 | 1, 2 | e1a 44652 | . . . . . . 7 ⊢ ( 𝐴 ≠ ∅ ▶ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅ ) |
| 4 | incom 4184 | . . . . . . . . 9 ⊢ (𝑥 ∩ 𝐴) = (𝐴 ∩ 𝑥) | |
| 5 | 4 | eqeq1i 2740 | . . . . . . . 8 ⊢ ((𝑥 ∩ 𝐴) = ∅ ↔ (𝐴 ∩ 𝑥) = ∅) |
| 6 | 5 | rexbii 3083 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅ ↔ ∃𝑥 ∈ 𝐴 (𝐴 ∩ 𝑥) = ∅) |
| 7 | 3, 6 | e1bi 44654 | . . . . . 6 ⊢ ( 𝐴 ≠ ∅ ▶ ∃𝑥 ∈ 𝐴 (𝐴 ∩ 𝑥) = ∅ ) |
| 8 | disj1 4427 | . . . . . . 7 ⊢ ((𝐴 ∩ 𝑥) = ∅ ↔ ∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥)) | |
| 9 | 8 | rexbii 3083 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 (𝐴 ∩ 𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥)) |
| 10 | 7, 9 | e1bi 44654 | . . . . 5 ⊢ ( 𝐴 ≠ ∅ ▶ ∃𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥) ) |
| 11 | alinexa 1843 | . . . . . 6 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥) ↔ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
| 12 | 11 | rexbii 3083 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| 13 | 10, 12 | e1bi 44654 | . . . 4 ⊢ ( 𝐴 ≠ ∅ ▶ ∃𝑥 ∈ 𝐴 ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ) |
| 14 | dfrex2 3063 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
| 15 | 13, 14 | e1bi 44654 | . . 3 ⊢ ( 𝐴 ≠ ∅ ▶ ¬ ∀𝑥 ∈ 𝐴 ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ) |
| 16 | notnotr 130 | . . . . . 6 ⊢ (¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
| 17 | notnot 142 | . . . . . 6 ⊢ (∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
| 18 | 16, 17 | impbii 209 | . . . . 5 ⊢ (¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| 19 | 18 | ralbii 3082 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| 20 | 19 | notbii 320 | . . 3 ⊢ (¬ ∀𝑥 ∈ 𝐴 ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| 21 | 15, 20 | e1bi 44654 | . 2 ⊢ ( 𝐴 ≠ ∅ ▶ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ) |
| 22 | 21 | in1 44596 | 1 ⊢ (𝐴 ≠ ∅ → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 ∩ cin 3925 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-reg 9606 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-vd1 44595 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |