Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zfregs2VD Structured version   Visualization version   GIF version

Theorem zfregs2VD 41407
Description: Virtual deduction proof of zfregs2 9168. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
zfregs2VD (𝐴 ≠ ∅ → ¬ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem zfregs2VD
StepHypRef Expression
1 idn1 41140 . . . . . . . 8 (   𝐴 ≠ ∅   ▶   𝐴 ≠ ∅   )
2 zfregs 9167 . . . . . . . 8 (𝐴 ≠ ∅ → ∃𝑥𝐴 (𝑥𝐴) = ∅)
31, 2e1a 41193 . . . . . . 7 (   𝐴 ≠ ∅   ▶   𝑥𝐴 (𝑥𝐴) = ∅   )
4 incom 4163 . . . . . . . . 9 (𝑥𝐴) = (𝐴𝑥)
54eqeq1i 2829 . . . . . . . 8 ((𝑥𝐴) = ∅ ↔ (𝐴𝑥) = ∅)
65rexbii 3242 . . . . . . 7 (∃𝑥𝐴 (𝑥𝐴) = ∅ ↔ ∃𝑥𝐴 (𝐴𝑥) = ∅)
73, 6e1bi 41195 . . . . . 6 (   𝐴 ≠ ∅   ▶   𝑥𝐴 (𝐴𝑥) = ∅   )
8 disj1 4384 . . . . . . 7 ((𝐴𝑥) = ∅ ↔ ∀𝑦(𝑦𝐴 → ¬ 𝑦𝑥))
98rexbii 3242 . . . . . 6 (∃𝑥𝐴 (𝐴𝑥) = ∅ ↔ ∃𝑥𝐴𝑦(𝑦𝐴 → ¬ 𝑦𝑥))
107, 9e1bi 41195 . . . . 5 (   𝐴 ≠ ∅   ▶   𝑥𝐴𝑦(𝑦𝐴 → ¬ 𝑦𝑥)   )
11 alinexa 1844 . . . . . 6 (∀𝑦(𝑦𝐴 → ¬ 𝑦𝑥) ↔ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
1211rexbii 3242 . . . . 5 (∃𝑥𝐴𝑦(𝑦𝐴 → ¬ 𝑦𝑥) ↔ ∃𝑥𝐴 ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
1310, 12e1bi 41195 . . . 4 (   𝐴 ≠ ∅   ▶   𝑥𝐴 ¬ ∃𝑦(𝑦𝐴𝑦𝑥)   )
14 dfrex2 3234 . . . 4 (∃𝑥𝐴 ¬ ∃𝑦(𝑦𝐴𝑦𝑥) ↔ ¬ ∀𝑥𝐴 ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
1513, 14e1bi 41195 . . 3 (   𝐴 ≠ ∅   ▶    ¬ ∀𝑥𝐴 ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥)   )
16 notnotr 132 . . . . . 6 (¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥) → ∃𝑦(𝑦𝐴𝑦𝑥))
17 notnot 144 . . . . . 6 (∃𝑦(𝑦𝐴𝑦𝑥) → ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
1816, 17impbii 212 . . . . 5 (¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥) ↔ ∃𝑦(𝑦𝐴𝑦𝑥))
1918ralbii 3160 . . . 4 (∀𝑥𝐴 ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥) ↔ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥))
2019notbii 323 . . 3 (¬ ∀𝑥𝐴 ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥) ↔ ¬ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥))
2115, 20e1bi 41195 . 2 (   𝐴 ≠ ∅   ▶    ¬ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥)   )
2221in1 41137 1 (𝐴 ≠ ∅ → ¬ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wal 1536   = wceq 1538  wex 1781  wcel 2115  wne 3014  wral 3133  wrex 3134  cin 3918  c0 4276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-reg 9049  ax-inf2 9097
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-om 7572  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-vd1 41136
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator