| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zfregs2VD | Structured version Visualization version GIF version | ||
| Description: Virtual deduction proof of zfregs2 9686. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| zfregs2VD | ⊢ (𝐴 ≠ ∅ → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn1 44564 | . . . . . . . 8 ⊢ ( 𝐴 ≠ ∅ ▶ 𝐴 ≠ ∅ ) | |
| 2 | zfregs 9685 | . . . . . . . 8 ⊢ (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) | |
| 3 | 1, 2 | e1a 44617 | . . . . . . 7 ⊢ ( 𝐴 ≠ ∅ ▶ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅ ) |
| 4 | incom 4172 | . . . . . . . . 9 ⊢ (𝑥 ∩ 𝐴) = (𝐴 ∩ 𝑥) | |
| 5 | 4 | eqeq1i 2734 | . . . . . . . 8 ⊢ ((𝑥 ∩ 𝐴) = ∅ ↔ (𝐴 ∩ 𝑥) = ∅) |
| 6 | 5 | rexbii 3076 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅ ↔ ∃𝑥 ∈ 𝐴 (𝐴 ∩ 𝑥) = ∅) |
| 7 | 3, 6 | e1bi 44619 | . . . . . 6 ⊢ ( 𝐴 ≠ ∅ ▶ ∃𝑥 ∈ 𝐴 (𝐴 ∩ 𝑥) = ∅ ) |
| 8 | disj1 4415 | . . . . . . 7 ⊢ ((𝐴 ∩ 𝑥) = ∅ ↔ ∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥)) | |
| 9 | 8 | rexbii 3076 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 (𝐴 ∩ 𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥)) |
| 10 | 7, 9 | e1bi 44619 | . . . . 5 ⊢ ( 𝐴 ≠ ∅ ▶ ∃𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥) ) |
| 11 | alinexa 1843 | . . . . . 6 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥) ↔ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
| 12 | 11 | rexbii 3076 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| 13 | 10, 12 | e1bi 44619 | . . . 4 ⊢ ( 𝐴 ≠ ∅ ▶ ∃𝑥 ∈ 𝐴 ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ) |
| 14 | dfrex2 3056 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
| 15 | 13, 14 | e1bi 44619 | . . 3 ⊢ ( 𝐴 ≠ ∅ ▶ ¬ ∀𝑥 ∈ 𝐴 ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ) |
| 16 | notnotr 130 | . . . . . 6 ⊢ (¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
| 17 | notnot 142 | . . . . . 6 ⊢ (∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
| 18 | 16, 17 | impbii 209 | . . . . 5 ⊢ (¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| 19 | 18 | ralbii 3075 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| 20 | 19 | notbii 320 | . . 3 ⊢ (¬ ∀𝑥 ∈ 𝐴 ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| 21 | 15, 20 | e1bi 44619 | . 2 ⊢ ( 𝐴 ≠ ∅ ▶ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ) |
| 22 | 21 | in1 44561 | 1 ⊢ (𝐴 ≠ ∅ → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∩ cin 3913 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-vd1 44560 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |