| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zfregs2VD | Structured version Visualization version GIF version | ||
| Description: Virtual deduction proof of zfregs2 9773. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| zfregs2VD | ⊢ (𝐴 ≠ ∅ → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn1 44594 | . . . . . . . 8 ⊢ ( 𝐴 ≠ ∅ ▶ 𝐴 ≠ ∅ ) | |
| 2 | zfregs 9772 | . . . . . . . 8 ⊢ (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) | |
| 3 | 1, 2 | e1a 44647 | . . . . . . 7 ⊢ ( 𝐴 ≠ ∅ ▶ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅ ) |
| 4 | incom 4209 | . . . . . . . . 9 ⊢ (𝑥 ∩ 𝐴) = (𝐴 ∩ 𝑥) | |
| 5 | 4 | eqeq1i 2742 | . . . . . . . 8 ⊢ ((𝑥 ∩ 𝐴) = ∅ ↔ (𝐴 ∩ 𝑥) = ∅) |
| 6 | 5 | rexbii 3094 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅ ↔ ∃𝑥 ∈ 𝐴 (𝐴 ∩ 𝑥) = ∅) |
| 7 | 3, 6 | e1bi 44649 | . . . . . 6 ⊢ ( 𝐴 ≠ ∅ ▶ ∃𝑥 ∈ 𝐴 (𝐴 ∩ 𝑥) = ∅ ) |
| 8 | disj1 4452 | . . . . . . 7 ⊢ ((𝐴 ∩ 𝑥) = ∅ ↔ ∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥)) | |
| 9 | 8 | rexbii 3094 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 (𝐴 ∩ 𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥)) |
| 10 | 7, 9 | e1bi 44649 | . . . . 5 ⊢ ( 𝐴 ≠ ∅ ▶ ∃𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥) ) |
| 11 | alinexa 1843 | . . . . . 6 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥) ↔ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
| 12 | 11 | rexbii 3094 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| 13 | 10, 12 | e1bi 44649 | . . . 4 ⊢ ( 𝐴 ≠ ∅ ▶ ∃𝑥 ∈ 𝐴 ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ) |
| 14 | dfrex2 3073 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
| 15 | 13, 14 | e1bi 44649 | . . 3 ⊢ ( 𝐴 ≠ ∅ ▶ ¬ ∀𝑥 ∈ 𝐴 ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ) |
| 16 | notnotr 130 | . . . . . 6 ⊢ (¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
| 17 | notnot 142 | . . . . . 6 ⊢ (∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
| 18 | 16, 17 | impbii 209 | . . . . 5 ⊢ (¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| 19 | 18 | ralbii 3093 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| 20 | 19 | notbii 320 | . . 3 ⊢ (¬ ∀𝑥 ∈ 𝐴 ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| 21 | 15, 20 | e1bi 44649 | . 2 ⊢ ( 𝐴 ≠ ∅ ▶ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ) |
| 22 | 21 | in1 44591 | 1 ⊢ (𝐴 ≠ ∅ → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∩ cin 3950 ∅c0 4333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 ax-reg 9632 ax-inf2 9681 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-vd1 44590 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |