![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssnpss | Structured version Visualization version GIF version |
Description: Partial trichotomy law for subclasses. (Contributed by NM, 16-May-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ssnpss | ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ⊊ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpss3 3890 | . . 3 ⊢ (𝐵 ⊊ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ 𝐵)) | |
2 | 1 | simprbi 491 | . 2 ⊢ (𝐵 ⊊ 𝐴 → ¬ 𝐴 ⊆ 𝐵) |
3 | 2 | con2i 137 | 1 ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ⊊ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ⊆ wss 3769 ⊊ wpss 3770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-ne 2972 df-in 3776 df-ss 3783 df-pss 3785 |
This theorem is referenced by: npss0 4210 sorpssuni 7180 sorpssint 7181 suplem2pr 10163 lsppratlem6 19475 atcvati 29770 finxpreclem3 33728 lsatcvat 35071 |
Copyright terms: Public domain | W3C validator |