![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssnpss | Structured version Visualization version GIF version |
Description: Partial trichotomy law for subclasses. (Contributed by NM, 16-May-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ssnpss | ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ⊊ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpss3 4112 | . . 3 ⊢ (𝐵 ⊊ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ 𝐵)) | |
2 | 1 | simprbi 496 | . 2 ⊢ (𝐵 ⊊ 𝐴 → ¬ 𝐴 ⊆ 𝐵) |
3 | 2 | con2i 139 | 1 ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ⊊ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ⊆ wss 3976 ⊊ wpss 3977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ne 2947 df-ss 3993 df-pss 3996 |
This theorem is referenced by: npss0 4471 sorpssuni 7767 sorpssint 7768 suplem2pr 11122 symgvalstruct 19438 symgvalstructOLD 19439 lsppratlem6 21177 atcvati 32418 finxpreclem3 37359 lsatcvat 39006 |
Copyright terms: Public domain | W3C validator |