MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnpss Structured version   Visualization version   GIF version

Theorem ssnpss 3860
Description: Partial trichotomy law for subclasses. (Contributed by NM, 16-May-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
ssnpss (𝐴𝐵 → ¬ 𝐵𝐴)

Proof of Theorem ssnpss
StepHypRef Expression
1 dfpss3 3843 . . 3 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐴𝐵))
21simprbi 484 . 2 (𝐵𝐴 → ¬ 𝐴𝐵)
32con2i 136 1 (𝐴𝐵 → ¬ 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wss 3723  wpss 3724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-ne 2944  df-in 3730  df-ss 3737  df-pss 3739
This theorem is referenced by:  npss0  4158  sorpssuni  7093  sorpssint  7094  suplem2pr  10077  lsppratlem6  19367  atcvati  29585  finxpreclem3  33567  lsatcvat  34859
  Copyright terms: Public domain W3C validator