| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssnpss | Structured version Visualization version GIF version | ||
| Description: Partial trichotomy law for subclasses. (Contributed by NM, 16-May-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssnpss | ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ⊊ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpss3 4055 | . . 3 ⊢ (𝐵 ⊊ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 ⊆ 𝐵)) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐵 ⊊ 𝐴 → ¬ 𝐴 ⊆ 𝐵) |
| 3 | 2 | con2i 139 | 1 ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ⊊ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ⊆ wss 3917 ⊊ wpss 3918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ne 2927 df-ss 3934 df-pss 3937 |
| This theorem is referenced by: npss0 4414 sorpssuni 7711 sorpssint 7712 suplem2pr 11013 symgvalstruct 19334 lsppratlem6 21069 atcvati 32322 finxpreclem3 37388 lsatcvat 39050 |
| Copyright terms: Public domain | W3C validator |