MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnpss Structured version   Visualization version   GIF version

Theorem ssnpss 4106
Description: Partial trichotomy law for subclasses. (Contributed by NM, 16-May-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
ssnpss (𝐴𝐵 → ¬ 𝐵𝐴)

Proof of Theorem ssnpss
StepHypRef Expression
1 dfpss3 4089 . . 3 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐴𝐵))
21simprbi 496 . 2 (𝐵𝐴 → ¬ 𝐴𝐵)
32con2i 139 1 (𝐴𝐵 → ¬ 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wss 3951  wpss 3952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2729  df-ne 2941  df-ss 3968  df-pss 3971
This theorem is referenced by:  npss0  4448  sorpssuni  7752  sorpssint  7753  suplem2pr  11093  symgvalstruct  19414  symgvalstructOLD  19415  lsppratlem6  21154  atcvati  32405  finxpreclem3  37394  lsatcvat  39051
  Copyright terms: Public domain W3C validator