MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnpss Structured version   Visualization version   GIF version

Theorem ssnpss 4034
Description: Partial trichotomy law for subclasses. (Contributed by NM, 16-May-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
ssnpss (𝐴𝐵 → ¬ 𝐵𝐴)

Proof of Theorem ssnpss
StepHypRef Expression
1 dfpss3 4017 . . 3 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐴𝐵))
21simprbi 496 . 2 (𝐵𝐴 → ¬ 𝐴𝐵)
32con2i 139 1 (𝐴𝐵 → ¬ 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wss 3883  wpss 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-in 3890  df-ss 3900  df-pss 3902
This theorem is referenced by:  npss0  4376  sorpssuni  7563  sorpssint  7564  suplem2pr  10740  symgvalstruct  18919  symgvalstructOLD  18920  lsppratlem6  20329  atcvati  30649  finxpreclem3  35491  lsatcvat  36991
  Copyright terms: Public domain W3C validator