| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afvvfunressn | Structured version Visualization version GIF version | ||
| Description: If the function value of a class for an argument is a set, the class restricted to the singleton of the argument is a function. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| Ref | Expression |
|---|---|
| afvvfunressn | ⊢ ((𝐹'''𝐴) ∈ 𝐵 → Fun (𝐹 ↾ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfunsnafv 47112 | . . 3 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹'''𝐴) = V) | |
| 2 | nvelim 47093 | . . 3 ⊢ ((𝐹'''𝐴) = V → ¬ (𝐹'''𝐴) ∈ 𝐵) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → ¬ (𝐹'''𝐴) ∈ 𝐵) |
| 4 | 3 | con4i 114 | 1 ⊢ ((𝐹'''𝐴) ∈ 𝐵 → Fun (𝐹 ↾ {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 {csn 4606 ↾ cres 5667 Fun wfun 6535 '''cafv 47087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-res 5677 df-iota 6494 df-fun 6543 df-fv 6549 df-aiota 47055 df-dfat 47089 df-afv 47090 |
| This theorem is referenced by: aovvfunressn 47157 |
| Copyright terms: Public domain | W3C validator |