| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afvvfunressn | Structured version Visualization version GIF version | ||
| Description: If the function value of a class for an argument is a set, the class restricted to the singleton of the argument is a function. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| Ref | Expression |
|---|---|
| afvvfunressn | ⊢ ((𝐹'''𝐴) ∈ 𝐵 → Fun (𝐹 ↾ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfunsnafv 47136 | . . 3 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹'''𝐴) = V) | |
| 2 | nvelim 47117 | . . 3 ⊢ ((𝐹'''𝐴) = V → ¬ (𝐹'''𝐴) ∈ 𝐵) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → ¬ (𝐹'''𝐴) ∈ 𝐵) |
| 4 | 3 | con4i 114 | 1 ⊢ ((𝐹'''𝐴) ∈ 𝐵 → Fun (𝐹 ↾ {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 {csn 4585 ↾ cres 5633 Fun wfun 6493 '''cafv 47111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-res 5643 df-iota 6452 df-fun 6501 df-fv 6507 df-aiota 47079 df-dfat 47113 df-afv 47114 |
| This theorem is referenced by: aovvfunressn 47181 |
| Copyright terms: Public domain | W3C validator |