Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvvfunressn Structured version   Visualization version   GIF version

Theorem afvvfunressn 47121
Description: If the function value of a class for an argument is a set, the class restricted to the singleton of the argument is a function. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvvfunressn ((𝐹'''𝐴) ∈ 𝐵 → Fun (𝐹 ↾ {𝐴}))

Proof of Theorem afvvfunressn
StepHypRef Expression
1 nfunsnafv 47120 . . 3 (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹'''𝐴) = V)
2 nvelim 47101 . . 3 ((𝐹'''𝐴) = V → ¬ (𝐹'''𝐴) ∈ 𝐵)
31, 2syl 17 . 2 (¬ Fun (𝐹 ↾ {𝐴}) → ¬ (𝐹'''𝐴) ∈ 𝐵)
43con4i 114 1 ((𝐹'''𝐴) ∈ 𝐵 → Fun (𝐹 ↾ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108  Vcvv 3481  {csn 4634  cres 5695  Fun wfun 6563  '''cafv 47095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-res 5705  df-iota 6522  df-fun 6571  df-fv 6577  df-aiota 47063  df-dfat 47097  df-afv 47098
This theorem is referenced by:  aovvfunressn  47165
  Copyright terms: Public domain W3C validator