Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvvfunressn Structured version   Visualization version   GIF version

Theorem afvvfunressn 47113
Description: If the function value of a class for an argument is a set, the class restricted to the singleton of the argument is a function. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvvfunressn ((𝐹'''𝐴) ∈ 𝐵 → Fun (𝐹 ↾ {𝐴}))

Proof of Theorem afvvfunressn
StepHypRef Expression
1 nfunsnafv 47112 . . 3 (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹'''𝐴) = V)
2 nvelim 47093 . . 3 ((𝐹'''𝐴) = V → ¬ (𝐹'''𝐴) ∈ 𝐵)
31, 2syl 17 . 2 (¬ Fun (𝐹 ↾ {𝐴}) → ¬ (𝐹'''𝐴) ∈ 𝐵)
43con4i 114 1 ((𝐹'''𝐴) ∈ 𝐵 → Fun (𝐹 ↾ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2107  Vcvv 3463  {csn 4606  cres 5667  Fun wfun 6535  '''cafv 47087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-res 5677  df-iota 6494  df-fun 6543  df-fv 6549  df-aiota 47055  df-dfat 47089  df-afv 47090
This theorem is referenced by:  aovvfunressn  47157
  Copyright terms: Public domain W3C validator