![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mtbii | Structured version Visualization version GIF version |
Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.) |
Ref | Expression |
---|---|
mtbii.min | ⊢ ¬ 𝜓 |
mtbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mtbii | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbii.min | . 2 ⊢ ¬ 𝜓 | |
2 | mtbii.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimprd 247 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
4 | 1, 3 | mtoi 198 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: limom 7871 omopthlem2 8659 fineqv 9263 nd3 10584 axunndlem1 10590 axregndlem1 10597 axregndlem2 10598 axregnd 10599 axacndlem5 10606 canthp1lem2 10648 alephgch 10669 inatsk 10773 addnidpi 10896 indpi 10902 archnq 10975 fsumsplit 15687 sumsplit 15714 geoisum1c 15826 fprodm1 15911 m1dvdsndvds 16731 gexdvds 19452 chtub 26715 nolt02o 27198 nogt01o 27199 wlkp1lem6 28935 avril1 29716 ballotlemi1 33501 ballotlemii 33502 distel 34775 onsucsuccmpi 35328 bj-inftyexpitaudisj 36086 bj-inftyexpidisj 36091 poimirlem28 36516 poimirlem32 36520 n0eldmqseq 37519 lcmineqlem23 40916 nvelim 45831 0nodd 46580 2nodd 46582 |
Copyright terms: Public domain | W3C validator |