| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtbii | Structured version Visualization version GIF version | ||
| Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.) |
| Ref | Expression |
|---|---|
| mtbii.min | ⊢ ¬ 𝜓 |
| mtbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mtbii | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbii.min | . 2 ⊢ ¬ 𝜓 | |
| 2 | mtbii.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimprd 248 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 4 | 1, 3 | mtoi 199 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: limom 7861 omopthlem2 8627 fineqv 9217 nd3 10549 axunndlem1 10555 axregndlem1 10562 axregndlem2 10563 axregnd 10564 axacndlem5 10571 canthp1lem2 10613 alephgch 10634 inatsk 10738 addnidpi 10861 indpi 10867 archnq 10940 fsumsplit 15714 sumsplit 15741 geoisum1c 15853 fprodm1 15940 m1dvdsndvds 16776 gexdvds 19521 chtub 27130 nolt02o 27614 nogt01o 27615 wlkp1lem6 29613 avril1 30399 ballotlemi1 34501 ballotlemii 34502 onvf1odlem1 35097 distel 35798 onsucsuccmpi 36438 bj-inftyexpitaudisj 37200 bj-inftyexpidisj 37205 poimirlem28 37649 poimirlem32 37653 n0eldmqseq 38648 lcmineqlem23 42046 nvelim 47128 0nodd 48162 2nodd 48164 |
| Copyright terms: Public domain | W3C validator |