| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtbii | Structured version Visualization version GIF version | ||
| Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.) |
| Ref | Expression |
|---|---|
| mtbii.min | ⊢ ¬ 𝜓 |
| mtbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mtbii | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbii.min | . 2 ⊢ ¬ 𝜓 | |
| 2 | mtbii.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimprd 248 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 4 | 1, 3 | mtoi 199 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: limom 7822 omopthlem2 8585 fineqv 9168 nelaneq 9512 nd3 10502 axunndlem1 10508 axregndlem1 10515 axregndlem2 10516 axregnd 10517 axacndlem5 10524 canthp1lem2 10566 alephgch 10587 inatsk 10691 addnidpi 10814 indpi 10820 archnq 10893 fsumsplit 15666 sumsplit 15693 geoisum1c 15805 fprodm1 15892 m1dvdsndvds 16728 gexdvds 19481 chtub 27139 nolt02o 27623 nogt01o 27624 wlkp1lem6 29640 avril1 30425 ballotlemi1 34473 ballotlemii 34474 onvf1odlem1 35078 distel 35779 onsucsuccmpi 36419 bj-inftyexpitaudisj 37181 bj-inftyexpidisj 37186 poimirlem28 37630 poimirlem32 37634 n0eldmqseq 38629 lcmineqlem23 42027 nvelim 47111 0nodd 48158 2nodd 48160 |
| Copyright terms: Public domain | W3C validator |