![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mtbii | Structured version Visualization version GIF version |
Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.) |
Ref | Expression |
---|---|
mtbii.min | ⊢ ¬ 𝜓 |
mtbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mtbii | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbii.min | . 2 ⊢ ¬ 𝜓 | |
2 | mtbii.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimprd 248 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
4 | 1, 3 | mtoi 199 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: limom 7903 omopthlem2 8697 fineqv 9297 nd3 10627 axunndlem1 10633 axregndlem1 10640 axregndlem2 10641 axregnd 10642 axacndlem5 10649 canthp1lem2 10691 alephgch 10712 inatsk 10816 addnidpi 10939 indpi 10945 archnq 11018 fsumsplit 15774 sumsplit 15801 geoisum1c 15913 fprodm1 16000 m1dvdsndvds 16832 gexdvds 19617 chtub 27271 nolt02o 27755 nogt01o 27756 wlkp1lem6 29711 avril1 30492 ballotlemi1 34484 ballotlemii 34485 distel 35785 onsucsuccmpi 36426 bj-inftyexpitaudisj 37188 bj-inftyexpidisj 37193 poimirlem28 37635 poimirlem32 37639 n0eldmqseq 38631 lcmineqlem23 42033 nvelim 47073 0nodd 48014 2nodd 48016 |
Copyright terms: Public domain | W3C validator |