| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtbii | Structured version Visualization version GIF version | ||
| Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.) |
| Ref | Expression |
|---|---|
| mtbii.min | ⊢ ¬ 𝜓 |
| mtbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mtbii | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbii.min | . 2 ⊢ ¬ 𝜓 | |
| 2 | mtbii.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimprd 248 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 4 | 1, 3 | mtoi 199 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: limom 7807 omopthlem2 8570 fineqv 9146 nelaneq 9482 nd3 10475 axunndlem1 10481 axregndlem1 10488 axregndlem2 10489 axregnd 10490 axacndlem5 10497 canthp1lem2 10539 alephgch 10560 inatsk 10664 addnidpi 10787 indpi 10793 archnq 10866 fsumsplit 15643 sumsplit 15670 geoisum1c 15782 fprodm1 15869 m1dvdsndvds 16705 gexdvds 19491 chtub 27145 nolt02o 27629 nogt01o 27630 wlkp1lem6 29650 avril1 30435 ballotlemi1 34508 ballotlemii 34509 fineqvnttrclse 35136 onvf1odlem1 35139 distel 35837 onsucsuccmpi 36477 bj-inftyexpitaudisj 37239 bj-inftyexpidisj 37244 poimirlem28 37688 poimirlem32 37692 n0eldmqseq 38687 lcmineqlem23 42084 nvelim 47154 0nodd 48201 2nodd 48203 |
| Copyright terms: Public domain | W3C validator |