| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtbii | Structured version Visualization version GIF version | ||
| Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.) |
| Ref | Expression |
|---|---|
| mtbii.min | ⊢ ¬ 𝜓 |
| mtbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mtbii | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbii.min | . 2 ⊢ ¬ 𝜓 | |
| 2 | mtbii.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimprd 248 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 4 | 1, 3 | mtoi 199 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: limom 7882 omopthlem2 8677 fineqv 9276 nd3 10608 axunndlem1 10614 axregndlem1 10621 axregndlem2 10622 axregnd 10623 axacndlem5 10630 canthp1lem2 10672 alephgch 10693 inatsk 10797 addnidpi 10920 indpi 10926 archnq 10999 fsumsplit 15762 sumsplit 15789 geoisum1c 15901 fprodm1 15988 m1dvdsndvds 16823 gexdvds 19570 chtub 27180 nolt02o 27664 nogt01o 27665 wlkp1lem6 29663 avril1 30449 ballotlemi1 34540 ballotlemii 34541 distel 35826 onsucsuccmpi 36466 bj-inftyexpitaudisj 37228 bj-inftyexpidisj 37233 poimirlem28 37677 poimirlem32 37681 n0eldmqseq 38672 lcmineqlem23 42069 nvelim 47119 0nodd 48112 2nodd 48114 |
| Copyright terms: Public domain | W3C validator |