MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mtbii Structured version   Visualization version   GIF version

Theorem mtbii 325
Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.)
Hypotheses
Ref Expression
mtbii.min ¬ 𝜓
mtbii.maj (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
mtbii (𝜑 → ¬ 𝜒)

Proof of Theorem mtbii
StepHypRef Expression
1 mtbii.min . 2 ¬ 𝜓
2 mtbii.maj . . 3 (𝜑 → (𝜓𝜒))
32biimprd 247 . 2 (𝜑 → (𝜒𝜓))
41, 3mtoi 198 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  limom  7703  omopthlem2  8450  fineqv  8967  nd3  10276  axunndlem1  10282  axregndlem1  10289  axregndlem2  10290  axregnd  10291  axacndlem5  10298  canthp1lem2  10340  alephgch  10361  inatsk  10465  addnidpi  10588  indpi  10594  archnq  10667  fsumsplit  15381  sumsplit  15408  geoisum1c  15520  fprodm1  15605  m1dvdsndvds  16427  gexdvds  19104  chtub  26265  wlkp1lem6  27948  avril1  28728  ballotlemi1  32369  ballotlemii  32370  distel  33685  nolt02o  33825  nogt01o  33826  onsucsuccmpi  34559  bj-inftyexpitaudisj  35303  bj-inftyexpidisj  35308  poimirlem28  35732  poimirlem32  35736  n0eldmqseq  36689  lcmineqlem23  39987  nvelim  44502  0nodd  45252  2nodd  45254
  Copyright terms: Public domain W3C validator