![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mtbii | Structured version Visualization version GIF version |
Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.) |
Ref | Expression |
---|---|
mtbii.min | ⊢ ¬ 𝜓 |
mtbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mtbii | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbii.min | . 2 ⊢ ¬ 𝜓 | |
2 | mtbii.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimprd 248 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
4 | 1, 3 | mtoi 199 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: limom 7919 omopthlem2 8716 fineqv 9326 nd3 10658 axunndlem1 10664 axregndlem1 10671 axregndlem2 10672 axregnd 10673 axacndlem5 10680 canthp1lem2 10722 alephgch 10743 inatsk 10847 addnidpi 10970 indpi 10976 archnq 11049 fsumsplit 15789 sumsplit 15816 geoisum1c 15928 fprodm1 16015 m1dvdsndvds 16845 gexdvds 19626 chtub 27274 nolt02o 27758 nogt01o 27759 wlkp1lem6 29714 avril1 30495 ballotlemi1 34467 ballotlemii 34468 distel 35767 onsucsuccmpi 36409 bj-inftyexpitaudisj 37171 bj-inftyexpidisj 37176 poimirlem28 37608 poimirlem32 37612 n0eldmqseq 38605 lcmineqlem23 42008 nvelim 47038 0nodd 47893 2nodd 47895 |
Copyright terms: Public domain | W3C validator |