![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mtbii | Structured version Visualization version GIF version |
Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.) |
Ref | Expression |
---|---|
mtbii.min | ⊢ ¬ 𝜓 |
mtbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mtbii | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbii.min | . 2 ⊢ ¬ 𝜓 | |
2 | mtbii.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimprd 247 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
4 | 1, 3 | mtoi 198 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: limom 7870 omopthlem2 8658 fineqv 9262 nd3 10583 axunndlem1 10589 axregndlem1 10596 axregndlem2 10597 axregnd 10598 axacndlem5 10605 canthp1lem2 10647 alephgch 10668 inatsk 10772 addnidpi 10895 indpi 10901 archnq 10974 fsumsplit 15686 sumsplit 15713 geoisum1c 15825 fprodm1 15910 m1dvdsndvds 16730 gexdvds 19451 chtub 26712 nolt02o 27195 nogt01o 27196 wlkp1lem6 28932 avril1 29713 ballotlemi1 33496 ballotlemii 33497 distel 34770 onsucsuccmpi 35323 bj-inftyexpitaudisj 36081 bj-inftyexpidisj 36086 poimirlem28 36511 poimirlem32 36515 n0eldmqseq 37514 lcmineqlem23 40911 nvelim 45821 0nodd 46570 2nodd 46572 |
Copyright terms: Public domain | W3C validator |