| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtbii | Structured version Visualization version GIF version | ||
| Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.) |
| Ref | Expression |
|---|---|
| mtbii.min | ⊢ ¬ 𝜓 |
| mtbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mtbii | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbii.min | . 2 ⊢ ¬ 𝜓 | |
| 2 | mtbii.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimprd 248 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 4 | 1, 3 | mtoi 199 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: limom 7858 omopthlem2 8624 fineqv 9210 nd3 10542 axunndlem1 10548 axregndlem1 10555 axregndlem2 10556 axregnd 10557 axacndlem5 10564 canthp1lem2 10606 alephgch 10627 inatsk 10731 addnidpi 10854 indpi 10860 archnq 10933 fsumsplit 15707 sumsplit 15734 geoisum1c 15846 fprodm1 15933 m1dvdsndvds 16769 gexdvds 19514 chtub 27123 nolt02o 27607 nogt01o 27608 wlkp1lem6 29606 avril1 30392 ballotlemi1 34494 ballotlemii 34495 onvf1odlem1 35090 distel 35791 onsucsuccmpi 36431 bj-inftyexpitaudisj 37193 bj-inftyexpidisj 37198 poimirlem28 37642 poimirlem32 37646 n0eldmqseq 38641 lcmineqlem23 42039 nvelim 47124 0nodd 48158 2nodd 48160 |
| Copyright terms: Public domain | W3C validator |