Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mtbii | Structured version Visualization version GIF version |
Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.) |
Ref | Expression |
---|---|
mtbii.min | ⊢ ¬ 𝜓 |
mtbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mtbii | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbii.min | . 2 ⊢ ¬ 𝜓 | |
2 | mtbii.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimprd 247 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
4 | 1, 3 | mtoi 198 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: limom 7703 omopthlem2 8450 fineqv 8967 nd3 10276 axunndlem1 10282 axregndlem1 10289 axregndlem2 10290 axregnd 10291 axacndlem5 10298 canthp1lem2 10340 alephgch 10361 inatsk 10465 addnidpi 10588 indpi 10594 archnq 10667 fsumsplit 15381 sumsplit 15408 geoisum1c 15520 fprodm1 15605 m1dvdsndvds 16427 gexdvds 19104 chtub 26265 wlkp1lem6 27948 avril1 28728 ballotlemi1 32369 ballotlemii 32370 distel 33685 nolt02o 33825 nogt01o 33826 onsucsuccmpi 34559 bj-inftyexpitaudisj 35303 bj-inftyexpidisj 35308 poimirlem28 35732 poimirlem32 35736 n0eldmqseq 36689 lcmineqlem23 39987 nvelim 44502 0nodd 45252 2nodd 45254 |
Copyright terms: Public domain | W3C validator |