Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mtbii | Structured version Visualization version GIF version |
Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.) |
Ref | Expression |
---|---|
mtbii.min | ⊢ ¬ 𝜓 |
mtbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mtbii | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbii.min | . 2 ⊢ ¬ 𝜓 | |
2 | mtbii.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimprd 247 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
4 | 1, 3 | mtoi 198 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: limom 7728 omopthlem2 8490 fineqv 9038 nd3 10345 axunndlem1 10351 axregndlem1 10358 axregndlem2 10359 axregnd 10360 axacndlem5 10367 canthp1lem2 10409 alephgch 10430 inatsk 10534 addnidpi 10657 indpi 10663 archnq 10736 fsumsplit 15453 sumsplit 15480 geoisum1c 15592 fprodm1 15677 m1dvdsndvds 16499 gexdvds 19189 chtub 26360 wlkp1lem6 28046 avril1 28827 ballotlemi1 32469 ballotlemii 32470 distel 33779 nolt02o 33898 nogt01o 33899 onsucsuccmpi 34632 bj-inftyexpitaudisj 35376 bj-inftyexpidisj 35381 poimirlem28 35805 poimirlem32 35809 n0eldmqseq 36762 lcmineqlem23 40059 nvelim 44615 0nodd 45364 2nodd 45366 |
Copyright terms: Public domain | W3C validator |