MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mtbii Structured version   Visualization version   GIF version

Theorem mtbii 326
Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.)
Hypotheses
Ref Expression
mtbii.min ¬ 𝜓
mtbii.maj (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
mtbii (𝜑 → ¬ 𝜒)

Proof of Theorem mtbii
StepHypRef Expression
1 mtbii.min . 2 ¬ 𝜓
2 mtbii.maj . . 3 (𝜑 → (𝜓𝜒))
32biimprd 247 . 2 (𝜑 → (𝜒𝜓))
41, 3mtoi 198 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  limom  7728  omopthlem2  8490  fineqv  9038  nd3  10345  axunndlem1  10351  axregndlem1  10358  axregndlem2  10359  axregnd  10360  axacndlem5  10367  canthp1lem2  10409  alephgch  10430  inatsk  10534  addnidpi  10657  indpi  10663  archnq  10736  fsumsplit  15453  sumsplit  15480  geoisum1c  15592  fprodm1  15677  m1dvdsndvds  16499  gexdvds  19189  chtub  26360  wlkp1lem6  28046  avril1  28827  ballotlemi1  32469  ballotlemii  32470  distel  33779  nolt02o  33898  nogt01o  33899  onsucsuccmpi  34632  bj-inftyexpitaudisj  35376  bj-inftyexpidisj  35381  poimirlem28  35805  poimirlem32  35809  n0eldmqseq  36762  lcmineqlem23  40059  nvelim  44615  0nodd  45364  2nodd  45366
  Copyright terms: Public domain W3C validator