Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mtbii | Structured version Visualization version GIF version |
Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.) |
Ref | Expression |
---|---|
mtbii.min | ⊢ ¬ 𝜓 |
mtbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mtbii | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbii.min | . 2 ⊢ ¬ 𝜓 | |
2 | mtbii.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimprd 247 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
4 | 1, 3 | mtoi 198 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: limom 7796 omopthlem2 8561 fineqv 9128 nd3 10446 axunndlem1 10452 axregndlem1 10459 axregndlem2 10460 axregnd 10461 axacndlem5 10468 canthp1lem2 10510 alephgch 10531 inatsk 10635 addnidpi 10758 indpi 10764 archnq 10837 fsumsplit 15552 sumsplit 15579 geoisum1c 15691 fprodm1 15776 m1dvdsndvds 16596 gexdvds 19285 chtub 26466 nolt02o 26949 nogt01o 26950 wlkp1lem6 28334 avril1 29115 ballotlemi1 32769 ballotlemii 32770 distel 34062 onsucsuccmpi 34728 bj-inftyexpitaudisj 35481 bj-inftyexpidisj 35486 poimirlem28 35910 poimirlem32 35914 n0eldmqseq 36916 lcmineqlem23 40313 nvelim 44966 0nodd 45715 2nodd 45717 |
Copyright terms: Public domain | W3C validator |