| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtbii | Structured version Visualization version GIF version | ||
| Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.) |
| Ref | Expression |
|---|---|
| mtbii.min | ⊢ ¬ 𝜓 |
| mtbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mtbii | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbii.min | . 2 ⊢ ¬ 𝜓 | |
| 2 | mtbii.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimprd 248 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 4 | 1, 3 | mtoi 199 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: limom 7838 omopthlem2 8601 fineqv 9186 nd3 10518 axunndlem1 10524 axregndlem1 10531 axregndlem2 10532 axregnd 10533 axacndlem5 10540 canthp1lem2 10582 alephgch 10603 inatsk 10707 addnidpi 10830 indpi 10836 archnq 10909 fsumsplit 15683 sumsplit 15710 geoisum1c 15822 fprodm1 15909 m1dvdsndvds 16745 gexdvds 19490 chtub 27099 nolt02o 27583 nogt01o 27584 wlkp1lem6 29580 avril1 30365 ballotlemi1 34467 ballotlemii 34468 onvf1odlem1 35063 distel 35764 onsucsuccmpi 36404 bj-inftyexpitaudisj 37166 bj-inftyexpidisj 37171 poimirlem28 37615 poimirlem32 37619 n0eldmqseq 38614 lcmineqlem23 42012 nvelim 47097 0nodd 48131 2nodd 48133 |
| Copyright terms: Public domain | W3C validator |