| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mtbii | Structured version Visualization version GIF version | ||
| Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.) |
| Ref | Expression |
|---|---|
| mtbii.min | ⊢ ¬ 𝜓 |
| mtbii.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mtbii | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbii.min | . 2 ⊢ ¬ 𝜓 | |
| 2 | mtbii.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimprd 248 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 4 | 1, 3 | mtoi 199 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: limom 7821 omopthlem2 8584 fineqv 9162 nelaneq 9498 nd3 10491 axunndlem1 10497 axregndlem1 10504 axregndlem2 10505 axregnd 10506 axacndlem5 10513 canthp1lem2 10555 alephgch 10576 inatsk 10680 addnidpi 10803 indpi 10809 archnq 10882 fsumsplit 15655 sumsplit 15682 geoisum1c 15794 fprodm1 15881 m1dvdsndvds 16717 gexdvds 19504 chtub 27170 nolt02o 27654 nogt01o 27655 wlkp1lem6 29676 avril1 30464 ballotlemi1 34588 ballotlemii 34589 fineqvnttrclse 35216 onvf1odlem1 35219 distel 35917 onsucsuccmpi 36559 bj-inftyexpitaudisj 37322 bj-inftyexpidisj 37327 poimirlem28 37761 poimirlem32 37765 n0eldmqseq 38820 lcmineqlem23 42217 nvelim 47285 0nodd 48332 2nodd 48334 |
| Copyright terms: Public domain | W3C validator |