Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvvv Structured version   Visualization version   GIF version

Theorem afvvv 46398
Description: If a function's value at an argument is a set, the argument is also a set. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvvv ((𝐹'''𝐴) ∈ 𝐵𝐴 ∈ V)

Proof of Theorem afvvv
StepHypRef Expression
1 afvprc 46397 . . 3 𝐴 ∈ V → (𝐹'''𝐴) = V)
2 nvelim 46376 . . 3 ((𝐹'''𝐴) = V → ¬ (𝐹'''𝐴) ∈ 𝐵)
31, 2syl 17 . 2 𝐴 ∈ V → ¬ (𝐹'''𝐴) ∈ 𝐵)
43con4i 114 1 ((𝐹'''𝐴) ∈ 𝐵𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wcel 2098  Vcvv 3466  '''cafv 46370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-br 5140  df-opab 5202  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-res 5679  df-iota 6486  df-fun 6536  df-fv 6542  df-aiota 46338  df-dfat 46372  df-afv 46373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator