![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afvvv | Structured version Visualization version GIF version |
Description: If a function's value at an argument is a set, the argument is also a set. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
afvvv | ⊢ ((𝐹'''𝐴) ∈ 𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | afvprc 46397 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐹'''𝐴) = V) | |
2 | nvelim 46376 | . . 3 ⊢ ((𝐹'''𝐴) = V → ¬ (𝐹'''𝐴) ∈ 𝐵) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ (𝐹'''𝐴) ∈ 𝐵) |
4 | 3 | con4i 114 | 1 ⊢ ((𝐹'''𝐴) ∈ 𝐵 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3466 '''cafv 46370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-br 5140 df-opab 5202 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-res 5679 df-iota 6486 df-fun 6536 df-fv 6542 df-aiota 46338 df-dfat 46372 df-afv 46373 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |