Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvvdm Structured version   Visualization version   GIF version

Theorem afvvdm 47158
Description: If the function value of a class for an argument is a set, the argument is contained in the domain of the class. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvvdm ((𝐹'''𝐴) ∈ 𝐵𝐴 ∈ dom 𝐹)

Proof of Theorem afvvdm
StepHypRef Expression
1 ndmafv 47157 . . 3 𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = V)
2 nvelim 47140 . . 3 ((𝐹'''𝐴) = V → ¬ (𝐹'''𝐴) ∈ 𝐵)
31, 2syl 17 . 2 𝐴 ∈ dom 𝐹 → ¬ (𝐹'''𝐴) ∈ 𝐵)
43con4i 114 1 ((𝐹'''𝐴) ∈ 𝐵𝐴 ∈ dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2107  Vcvv 3479  dom cdm 5684  '''cafv 47134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-res 5696  df-iota 6513  df-fun 6562  df-fv 6568  df-aiota 47102  df-dfat 47136  df-afv 47137
This theorem is referenced by:  aovvdm  47202  aovrcl  47206  aoprssdm  47219
  Copyright terms: Public domain W3C validator