MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnoprabg Structured version   Visualization version   GIF version

Theorem fnoprabg 7254
Description: Functionality and domain of an operation class abstraction. (Contributed by NM, 28-Aug-2007.)
Assertion
Ref Expression
fnoprabg (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑})
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem fnoprabg
StepHypRef Expression
1 eumo 2638 . . . . . 6 (∃!𝑧𝜓 → ∃*𝑧𝜓)
21imim2i 16 . . . . 5 ((𝜑 → ∃!𝑧𝜓) → (𝜑 → ∃*𝑧𝜓))
3 moanimv 2681 . . . . 5 (∃*𝑧(𝜑𝜓) ↔ (𝜑 → ∃*𝑧𝜓))
42, 3sylibr 237 . . . 4 ((𝜑 → ∃!𝑧𝜓) → ∃*𝑧(𝜑𝜓))
542alimi 1814 . . 3 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → ∀𝑥𝑦∃*𝑧(𝜑𝜓))
6 funoprabg 7252 . . 3 (∀𝑥𝑦∃*𝑧(𝜑𝜓) → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)})
75, 6syl 17 . 2 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)})
8 dmoprab 7234 . . 3 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝜑𝜓)}
9 nfa1 2152 . . . 4 𝑥𝑥𝑦(𝜑 → ∃!𝑧𝜓)
10 nfa2 2174 . . . 4 𝑦𝑥𝑦(𝜑 → ∃!𝑧𝜓)
11 simpl 486 . . . . . . . 8 ((𝜑𝜓) → 𝜑)
1211exlimiv 1931 . . . . . . 7 (∃𝑧(𝜑𝜓) → 𝜑)
13 euex 2637 . . . . . . . . . 10 (∃!𝑧𝜓 → ∃𝑧𝜓)
1413imim2i 16 . . . . . . . . 9 ((𝜑 → ∃!𝑧𝜓) → (𝜑 → ∃𝑧𝜓))
1514ancld 554 . . . . . . . 8 ((𝜑 → ∃!𝑧𝜓) → (𝜑 → (𝜑 ∧ ∃𝑧𝜓)))
16 19.42v 1954 . . . . . . . 8 (∃𝑧(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑧𝜓))
1715, 16syl6ibr 255 . . . . . . 7 ((𝜑 → ∃!𝑧𝜓) → (𝜑 → ∃𝑧(𝜑𝜓)))
1812, 17impbid2 229 . . . . . 6 ((𝜑 → ∃!𝑧𝜓) → (∃𝑧(𝜑𝜓) ↔ 𝜑))
1918sps 2182 . . . . 5 (∀𝑦(𝜑 → ∃!𝑧𝜓) → (∃𝑧(𝜑𝜓) ↔ 𝜑))
2019sps 2182 . . . 4 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → (∃𝑧(𝜑𝜓) ↔ 𝜑))
219, 10, 20opabbid 5095 . . 3 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ 𝜑})
228, 21syl5eq 2845 . 2 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ 𝜑})
23 df-fn 6327 . 2 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ (Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} ∧ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
247, 22, 23sylanbrc 586 1 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wex 1781  ∃*wmo 2596  ∃!weu 2628  {copab 5092  dom cdm 5519  Fun wfun 6318   Fn wfn 6319  {coprab 7136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-fun 6326  df-fn 6327  df-oprab 7139
This theorem is referenced by:  fnoprab  7256  ovg  7293
  Copyright terms: Public domain W3C validator