Proof of Theorem fnoprabg
Step | Hyp | Ref
| Expression |
1 | | eumo 2578 |
. . . . . 6
⊢
(∃!𝑧𝜓 → ∃*𝑧𝜓) |
2 | 1 | imim2i 16 |
. . . . 5
⊢ ((𝜑 → ∃!𝑧𝜓) → (𝜑 → ∃*𝑧𝜓)) |
3 | | moanimv 2621 |
. . . . 5
⊢
(∃*𝑧(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑧𝜓)) |
4 | 2, 3 | sylibr 233 |
. . . 4
⊢ ((𝜑 → ∃!𝑧𝜓) → ∃*𝑧(𝜑 ∧ 𝜓)) |
5 | 4 | 2alimi 1816 |
. . 3
⊢
(∀𝑥∀𝑦(𝜑 → ∃!𝑧𝜓) → ∀𝑥∀𝑦∃*𝑧(𝜑 ∧ 𝜓)) |
6 | | funoprabg 7373 |
. . 3
⊢
(∀𝑥∀𝑦∃*𝑧(𝜑 ∧ 𝜓) → Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝜑 ∧ 𝜓)}) |
7 | 5, 6 | syl 17 |
. 2
⊢
(∀𝑥∀𝑦(𝜑 → ∃!𝑧𝜓) → Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝜑 ∧ 𝜓)}) |
8 | | dmoprab 7354 |
. . 3
⊢ dom
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝜑 ∧ 𝜓)} = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝜑 ∧ 𝜓)} |
9 | | nfa1 2150 |
. . . 4
⊢
Ⅎ𝑥∀𝑥∀𝑦(𝜑 → ∃!𝑧𝜓) |
10 | | nfa2 2172 |
. . . 4
⊢
Ⅎ𝑦∀𝑥∀𝑦(𝜑 → ∃!𝑧𝜓) |
11 | | simpl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → 𝜑) |
12 | 11 | exlimiv 1934 |
. . . . . . 7
⊢
(∃𝑧(𝜑 ∧ 𝜓) → 𝜑) |
13 | | euex 2577 |
. . . . . . . . . 10
⊢
(∃!𝑧𝜓 → ∃𝑧𝜓) |
14 | 13 | imim2i 16 |
. . . . . . . . 9
⊢ ((𝜑 → ∃!𝑧𝜓) → (𝜑 → ∃𝑧𝜓)) |
15 | 14 | ancld 550 |
. . . . . . . 8
⊢ ((𝜑 → ∃!𝑧𝜓) → (𝜑 → (𝜑 ∧ ∃𝑧𝜓))) |
16 | | 19.42v 1958 |
. . . . . . . 8
⊢
(∃𝑧(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑧𝜓)) |
17 | 15, 16 | syl6ibr 251 |
. . . . . . 7
⊢ ((𝜑 → ∃!𝑧𝜓) → (𝜑 → ∃𝑧(𝜑 ∧ 𝜓))) |
18 | 12, 17 | impbid2 225 |
. . . . . 6
⊢ ((𝜑 → ∃!𝑧𝜓) → (∃𝑧(𝜑 ∧ 𝜓) ↔ 𝜑)) |
19 | 18 | sps 2180 |
. . . . 5
⊢
(∀𝑦(𝜑 → ∃!𝑧𝜓) → (∃𝑧(𝜑 ∧ 𝜓) ↔ 𝜑)) |
20 | 19 | sps 2180 |
. . . 4
⊢
(∀𝑥∀𝑦(𝜑 → ∃!𝑧𝜓) → (∃𝑧(𝜑 ∧ 𝜓) ↔ 𝜑)) |
21 | 9, 10, 20 | opabbid 5135 |
. . 3
⊢
(∀𝑥∀𝑦(𝜑 → ∃!𝑧𝜓) → {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝜑 ∧ 𝜓)} = {〈𝑥, 𝑦〉 ∣ 𝜑}) |
22 | 8, 21 | eqtrid 2790 |
. 2
⊢
(∀𝑥∀𝑦(𝜑 → ∃!𝑧𝜓) → dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝜑 ∧ 𝜓)} = {〈𝑥, 𝑦〉 ∣ 𝜑}) |
23 | | df-fn 6421 |
. 2
⊢
({〈〈𝑥,
𝑦〉, 𝑧〉 ∣ (𝜑 ∧ 𝜓)} Fn {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ (Fun {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝜑 ∧ 𝜓)} ∧ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝜑 ∧ 𝜓)} = {〈𝑥, 𝑦〉 ∣ 𝜑})) |
24 | 7, 22, 23 | sylanbrc 582 |
1
⊢
(∀𝑥∀𝑦(𝜑 → ∃!𝑧𝜓) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝜑 ∧ 𝜓)} Fn {〈𝑥, 𝑦〉 ∣ 𝜑}) |