MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnoprabg Structured version   Visualization version   GIF version

Theorem fnoprabg 7275
Description: Functionality and domain of an operation class abstraction. (Contributed by NM, 28-Aug-2007.)
Assertion
Ref Expression
fnoprabg (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑})
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem fnoprabg
StepHypRef Expression
1 eumo 2663 . . . . . 6 (∃!𝑧𝜓 → ∃*𝑧𝜓)
21imim2i 16 . . . . 5 ((𝜑 → ∃!𝑧𝜓) → (𝜑 → ∃*𝑧𝜓))
3 moanimv 2704 . . . . 5 (∃*𝑧(𝜑𝜓) ↔ (𝜑 → ∃*𝑧𝜓))
42, 3sylibr 236 . . . 4 ((𝜑 → ∃!𝑧𝜓) → ∃*𝑧(𝜑𝜓))
542alimi 1813 . . 3 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → ∀𝑥𝑦∃*𝑧(𝜑𝜓))
6 funoprabg 7273 . . 3 (∀𝑥𝑦∃*𝑧(𝜑𝜓) → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)})
75, 6syl 17 . 2 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)})
8 dmoprab 7255 . . 3 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝜑𝜓)}
9 nfa1 2155 . . . 4 𝑥𝑥𝑦(𝜑 → ∃!𝑧𝜓)
10 nfa2 2176 . . . 4 𝑦𝑥𝑦(𝜑 → ∃!𝑧𝜓)
11 simpl 485 . . . . . . . 8 ((𝜑𝜓) → 𝜑)
1211exlimiv 1931 . . . . . . 7 (∃𝑧(𝜑𝜓) → 𝜑)
13 euex 2662 . . . . . . . . . 10 (∃!𝑧𝜓 → ∃𝑧𝜓)
1413imim2i 16 . . . . . . . . 9 ((𝜑 → ∃!𝑧𝜓) → (𝜑 → ∃𝑧𝜓))
1514ancld 553 . . . . . . . 8 ((𝜑 → ∃!𝑧𝜓) → (𝜑 → (𝜑 ∧ ∃𝑧𝜓)))
16 19.42v 1954 . . . . . . . 8 (∃𝑧(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑧𝜓))
1715, 16syl6ibr 254 . . . . . . 7 ((𝜑 → ∃!𝑧𝜓) → (𝜑 → ∃𝑧(𝜑𝜓)))
1812, 17impbid2 228 . . . . . 6 ((𝜑 → ∃!𝑧𝜓) → (∃𝑧(𝜑𝜓) ↔ 𝜑))
1918sps 2184 . . . . 5 (∀𝑦(𝜑 → ∃!𝑧𝜓) → (∃𝑧(𝜑𝜓) ↔ 𝜑))
2019sps 2184 . . . 4 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → (∃𝑧(𝜑𝜓) ↔ 𝜑))
219, 10, 20opabbid 5131 . . 3 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ 𝜑})
228, 21syl5eq 2868 . 2 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ 𝜑})
23 df-fn 6358 . 2 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ (Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} ∧ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
247, 22, 23sylanbrc 585 1 (∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1535   = wceq 1537  wex 1780  ∃*wmo 2620  ∃!weu 2653  {copab 5128  dom cdm 5555  Fun wfun 6349   Fn wfn 6350  {coprab 7157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-fun 6357  df-fn 6358  df-oprab 7160
This theorem is referenced by:  fnoprab  7277  ovg  7313
  Copyright terms: Public domain W3C validator