Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feqmptdf | Structured version Visualization version GIF version |
Description: Deduction form of dffn5f 6822. (Contributed by Mario Carneiro, 8-Jan-2015.) (Revised by Thierry Arnoux, 10-May-2017.) |
Ref | Expression |
---|---|
feqmptdf.1 | ⊢ Ⅎ𝑥𝐴 |
feqmptdf.2 | ⊢ Ⅎ𝑥𝐹 |
feqmptdf.3 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
feqmptdf | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feqmptdf.3 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | ffn 6584 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | fnrel 6519 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
4 | feqmptdf.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
5 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑦𝐹 | |
6 | 4, 5 | dfrel4 6083 | . . . . 5 ⊢ (Rel 𝐹 ↔ 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦}) |
7 | 3, 6 | sylib 217 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦}) |
8 | feqmptdf.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
9 | 4, 8 | nffn 6516 | . . . . 5 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
10 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑦 𝐹 Fn 𝐴 | |
11 | fnbr 6525 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝑦) → 𝑥 ∈ 𝐴) | |
12 | 11 | ex 412 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
13 | 12 | pm4.71rd 562 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
14 | eqcom 2745 | . . . . . . . 8 ⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | |
15 | fnbrfvb 6804 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) | |
16 | 14, 15 | syl5bb 282 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) |
17 | 16 | pm5.32da 578 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
18 | 13, 17 | bitr4d 281 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)))) |
19 | 9, 10, 18 | opabbid 5135 | . . . 4 ⊢ (𝐹 Fn 𝐴 → {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
20 | 7, 19 | eqtrd 2778 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
21 | df-mpt 5154 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} | |
22 | 20, 21 | eqtr4di 2797 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
23 | 1, 2, 22 | 3syl 18 | 1 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 class class class wbr 5070 {copab 5132 ↦ cmpt 5153 Rel wrel 5585 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 |
This theorem is referenced by: esumf1o 31918 feqresmptf 42661 liminfvaluz3 43227 liminfvaluz4 43230 volioofmpt 43425 volicofmpt 43428 |
Copyright terms: Public domain | W3C validator |