MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feqmptdf Structured version   Visualization version   GIF version

Theorem feqmptdf 6821
Description: Deduction form of dffn5f 6822. (Contributed by Mario Carneiro, 8-Jan-2015.) (Revised by Thierry Arnoux, 10-May-2017.)
Hypotheses
Ref Expression
feqmptdf.1 𝑥𝐴
feqmptdf.2 𝑥𝐹
feqmptdf.3 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
feqmptdf (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))

Proof of Theorem feqmptdf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 feqmptdf.3 . 2 (𝜑𝐹:𝐴𝐵)
2 ffn 6584 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
3 fnrel 6519 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
4 feqmptdf.2 . . . . . 6 𝑥𝐹
5 nfcv 2906 . . . . . 6 𝑦𝐹
64, 5dfrel4 6083 . . . . 5 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
73, 6sylib 217 . . . 4 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
8 feqmptdf.1 . . . . . 6 𝑥𝐴
94, 8nffn 6516 . . . . 5 𝑥 𝐹 Fn 𝐴
10 nfv 1918 . . . . 5 𝑦 𝐹 Fn 𝐴
11 fnbr 6525 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
1211ex 412 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
1312pm4.71rd 562 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
14 eqcom 2745 . . . . . . . 8 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
15 fnbrfvb 6804 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
1614, 15syl5bb 282 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
1716pm5.32da 578 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
1813, 17bitr4d 281 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹𝑥))))
199, 10, 18opabbid 5135 . . . 4 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
207, 19eqtrd 2778 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
21 df-mpt 5154 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
2220, 21eqtr4di 2797 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
231, 2, 223syl 18 1 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wnfc 2886   class class class wbr 5070  {copab 5132  cmpt 5153  Rel wrel 5585   Fn wfn 6413  wf 6414  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426
This theorem is referenced by:  esumf1o  31918  feqresmptf  42661  liminfvaluz3  43227  liminfvaluz4  43230  volioofmpt  43425  volicofmpt  43428
  Copyright terms: Public domain W3C validator