![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feqmptdf | Structured version Visualization version GIF version |
Description: Deduction form of dffn5f 6499. (Contributed by Mario Carneiro, 8-Jan-2015.) (Revised by Thierry Arnoux, 10-May-2017.) |
Ref | Expression |
---|---|
feqmptdf.1 | ⊢ Ⅎ𝑥𝐴 |
feqmptdf.2 | ⊢ Ⅎ𝑥𝐹 |
feqmptdf.3 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
feqmptdf | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feqmptdf.3 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | ffn 6278 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | fnrel 6222 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
4 | feqmptdf.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
5 | nfcv 2969 | . . . . . 6 ⊢ Ⅎ𝑦𝐹 | |
6 | 4, 5 | dfrel4 5826 | . . . . 5 ⊢ (Rel 𝐹 ↔ 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦}) |
7 | 3, 6 | sylib 210 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦}) |
8 | feqmptdf.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
9 | 4, 8 | nffn 6220 | . . . . 5 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
10 | nfv 2013 | . . . . 5 ⊢ Ⅎ𝑦 𝐹 Fn 𝐴 | |
11 | fnbr 6226 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝑦) → 𝑥 ∈ 𝐴) | |
12 | 11 | ex 403 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
13 | 12 | pm4.71rd 558 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
14 | eqcom 2832 | . . . . . . . 8 ⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | |
15 | fnbrfvb 6482 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) | |
16 | 14, 15 | syl5bb 275 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) |
17 | 16 | pm5.32da 574 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
18 | 13, 17 | bitr4d 274 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥)))) |
19 | 9, 10, 18 | opabbid 4938 | . . . 4 ⊢ (𝐹 Fn 𝐴 → {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
20 | 7, 19 | eqtrd 2861 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))}) |
21 | df-mpt 4953 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹‘𝑥))} | |
22 | 20, 21 | syl6eqr 2879 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
23 | 1, 2, 22 | 3syl 18 | 1 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 Ⅎwnfc 2956 class class class wbr 4873 {copab 4935 ↦ cmpt 4952 Rel wrel 5347 Fn wfn 6118 ⟶wf 6119 ‘cfv 6123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-fv 6131 |
This theorem is referenced by: esumf1o 30646 feqresmptf 40228 liminfvaluz3 40816 liminfvaluz4 40819 volioofmpt 40998 volicofmpt 41001 |
Copyright terms: Public domain | W3C validator |