MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feqmptdf Structured version   Visualization version   GIF version

Theorem feqmptdf 6839
Description: Deduction form of dffn5f 6840. (Contributed by Mario Carneiro, 8-Jan-2015.) (Revised by Thierry Arnoux, 10-May-2017.)
Hypotheses
Ref Expression
feqmptdf.1 𝑥𝐴
feqmptdf.2 𝑥𝐹
feqmptdf.3 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
feqmptdf (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))

Proof of Theorem feqmptdf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 feqmptdf.3 . 2 (𝜑𝐹:𝐴𝐵)
2 ffn 6600 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
3 fnrel 6535 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
4 feqmptdf.2 . . . . . 6 𝑥𝐹
5 nfcv 2907 . . . . . 6 𝑦𝐹
64, 5dfrel4 6094 . . . . 5 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
73, 6sylib 217 . . . 4 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
8 feqmptdf.1 . . . . . 6 𝑥𝐴
94, 8nffn 6532 . . . . 5 𝑥 𝐹 Fn 𝐴
10 nfv 1917 . . . . 5 𝑦 𝐹 Fn 𝐴
11 fnbr 6541 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
1211ex 413 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
1312pm4.71rd 563 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
14 eqcom 2745 . . . . . . . 8 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
15 fnbrfvb 6822 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
1614, 15bitrid 282 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
1716pm5.32da 579 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
1813, 17bitr4d 281 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹𝑥))))
199, 10, 18opabbid 5139 . . . 4 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
207, 19eqtrd 2778 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
21 df-mpt 5158 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
2220, 21eqtr4di 2796 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
231, 2, 223syl 18 1 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wnfc 2887   class class class wbr 5074  {copab 5136  cmpt 5157  Rel wrel 5594   Fn wfn 6428  wf 6429  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441
This theorem is referenced by:  esumf1o  32018  feqresmptf  42772  liminfvaluz3  43337  liminfvaluz4  43340  volioofmpt  43535  volicofmpt  43538
  Copyright terms: Public domain W3C validator