MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feqmptdf Structured version   Visualization version   GIF version

Theorem feqmptdf 6498
Description: Deduction form of dffn5f 6499. (Contributed by Mario Carneiro, 8-Jan-2015.) (Revised by Thierry Arnoux, 10-May-2017.)
Hypotheses
Ref Expression
feqmptdf.1 𝑥𝐴
feqmptdf.2 𝑥𝐹
feqmptdf.3 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
feqmptdf (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))

Proof of Theorem feqmptdf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 feqmptdf.3 . 2 (𝜑𝐹:𝐴𝐵)
2 ffn 6278 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
3 fnrel 6222 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
4 feqmptdf.2 . . . . . 6 𝑥𝐹
5 nfcv 2969 . . . . . 6 𝑦𝐹
64, 5dfrel4 5826 . . . . 5 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
73, 6sylib 210 . . . 4 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
8 feqmptdf.1 . . . . . 6 𝑥𝐴
94, 8nffn 6220 . . . . 5 𝑥 𝐹 Fn 𝐴
10 nfv 2013 . . . . 5 𝑦 𝐹 Fn 𝐴
11 fnbr 6226 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
1211ex 403 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
1312pm4.71rd 558 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
14 eqcom 2832 . . . . . . . 8 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
15 fnbrfvb 6482 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
1614, 15syl5bb 275 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
1716pm5.32da 574 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
1813, 17bitr4d 274 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹𝑥))))
199, 10, 18opabbid 4938 . . . 4 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
207, 19eqtrd 2861 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
21 df-mpt 4953 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
2220, 21syl6eqr 2879 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
231, 2, 223syl 18 1 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  wnfc 2956   class class class wbr 4873  {copab 4935  cmpt 4952  Rel wrel 5347   Fn wfn 6118  wf 6119  cfv 6123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-fv 6131
This theorem is referenced by:  esumf1o  30646  feqresmptf  40228  liminfvaluz3  40816  liminfvaluz4  40819  volioofmpt  40998  volicofmpt  41001
  Copyright terms: Public domain W3C validator