MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feqmptdf Structured version   Visualization version   GIF version

Theorem feqmptdf 6979
Description: Deduction form of dffn5f 6980. (Contributed by Mario Carneiro, 8-Jan-2015.) (Revised by Thierry Arnoux, 10-May-2017.)
Hypotheses
Ref Expression
feqmptdf.1 𝑥𝐴
feqmptdf.2 𝑥𝐹
feqmptdf.3 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
feqmptdf (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))

Proof of Theorem feqmptdf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 feqmptdf.3 . 2 (𝜑𝐹:𝐴𝐵)
2 ffn 6737 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
3 fnrel 6671 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
4 feqmptdf.2 . . . . . 6 𝑥𝐹
5 nfcv 2903 . . . . . 6 𝑦𝐹
64, 5dfrel4 6213 . . . . 5 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
73, 6sylib 218 . . . 4 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
8 feqmptdf.1 . . . . . 6 𝑥𝐴
94, 8nffn 6668 . . . . 5 𝑥 𝐹 Fn 𝐴
10 nfv 1912 . . . . 5 𝑦 𝐹 Fn 𝐴
11 fnbr 6677 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
1211ex 412 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
1312pm4.71rd 562 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
14 eqcom 2742 . . . . . . . 8 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
15 fnbrfvb 6960 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
1614, 15bitrid 283 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
1716pm5.32da 579 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
1813, 17bitr4d 282 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹𝑥))))
199, 10, 18opabbid 5213 . . . 4 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
207, 19eqtrd 2775 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
21 df-mpt 5232 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
2220, 21eqtr4di 2793 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
231, 2, 223syl 18 1 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wnfc 2888   class class class wbr 5148  {copab 5210  cmpt 5231  Rel wrel 5694   Fn wfn 6558  wf 6559  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571
This theorem is referenced by:  esumf1o  34031  feqresmptf  45174  liminfvaluz3  45752  liminfvaluz4  45755  volioofmpt  45950  volicofmpt  45953
  Copyright terms: Public domain W3C validator