Proof of Theorem propeqop
| Step | Hyp | Ref
| Expression |
| 1 | | snopeqop.a |
. . . . 5
⊢ 𝐴 ∈ V |
| 2 | | snopeqop.b |
. . . . 5
⊢ 𝐵 ∈ V |
| 3 | 1, 2 | opeqsn 5509 |
. . . 4
⊢
(〈𝐴, 𝐵〉 = {𝐸} ↔ (𝐴 = 𝐵 ∧ 𝐸 = {𝐴})) |
| 4 | | propeqop.c |
. . . . 5
⊢ 𝐶 ∈ V |
| 5 | | propeqop.d |
. . . . 5
⊢ 𝐷 ∈ V |
| 6 | | propeqop.e |
. . . . 5
⊢ 𝐸 ∈ V |
| 7 | | propeqop.f |
. . . . 5
⊢ 𝐹 ∈ V |
| 8 | 4, 5, 6, 7 | opeqpr 5510 |
. . . 4
⊢
(〈𝐶, 𝐷〉 = {𝐸, 𝐹} ↔ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) |
| 9 | 3, 8 | anbi12i 628 |
. . 3
⊢
((〈𝐴, 𝐵〉 = {𝐸} ∧ 〈𝐶, 𝐷〉 = {𝐸, 𝐹}) ↔ ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})))) |
| 10 | 1, 2, 6, 7 | opeqpr 5510 |
. . . 4
⊢
(〈𝐴, 𝐵〉 = {𝐸, 𝐹} ↔ ((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}))) |
| 11 | 4, 5 | opeqsn 5509 |
. . . 4
⊢
(〈𝐶, 𝐷〉 = {𝐸} ↔ (𝐶 = 𝐷 ∧ 𝐸 = {𝐶})) |
| 12 | 10, 11 | anbi12i 628 |
. . 3
⊢
((〈𝐴, 𝐵〉 = {𝐸, 𝐹} ∧ 〈𝐶, 𝐷〉 = {𝐸}) ↔ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷 ∧ 𝐸 = {𝐶}))) |
| 13 | 9, 12 | orbi12i 915 |
. 2
⊢
(((〈𝐴, 𝐵〉 = {𝐸} ∧ 〈𝐶, 𝐷〉 = {𝐸, 𝐹}) ∨ (〈𝐴, 𝐵〉 = {𝐸, 𝐹} ∧ 〈𝐶, 𝐷〉 = {𝐸})) ↔ (((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) ∨ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷 ∧ 𝐸 = {𝐶})))) |
| 14 | | eqcom 2744 |
. . 3
⊢
({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = 〈𝐸, 𝐹〉 ↔ 〈𝐸, 𝐹〉 = {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉}) |
| 15 | | opex 5469 |
. . . 4
⊢
〈𝐴, 𝐵〉 ∈ V |
| 16 | | opex 5469 |
. . . 4
⊢
〈𝐶, 𝐷〉 ∈ V |
| 17 | 6, 7, 15, 16 | opeqpr 5510 |
. . 3
⊢
(〈𝐸, 𝐹〉 = {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ↔ ((〈𝐴, 𝐵〉 = {𝐸} ∧ 〈𝐶, 𝐷〉 = {𝐸, 𝐹}) ∨ (〈𝐴, 𝐵〉 = {𝐸, 𝐹} ∧ 〈𝐶, 𝐷〉 = {𝐸}))) |
| 18 | 14, 17 | bitri 275 |
. 2
⊢
({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = 〈𝐸, 𝐹〉 ↔ ((〈𝐴, 𝐵〉 = {𝐸} ∧ 〈𝐶, 𝐷〉 = {𝐸, 𝐹}) ∨ (〈𝐴, 𝐵〉 = {𝐸, 𝐹} ∧ 〈𝐶, 𝐷〉 = {𝐸}))) |
| 19 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) → 𝐴 = 𝐵) |
| 20 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) → 𝐸 = {𝐴}) |
| 21 | 19, 20 | anim12i 613 |
. . . . . . . 8
⊢ (((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∧ (𝐴 = 𝐶 ∧ 𝐸 = {𝐴})) → (𝐴 = 𝐵 ∧ 𝐸 = {𝐴})) |
| 22 | | sneq 4636 |
. . . . . . . . . . . . 13
⊢ (𝐴 = 𝐶 → {𝐴} = {𝐶}) |
| 23 | 22 | eqeq2d 2748 |
. . . . . . . . . . . 12
⊢ (𝐴 = 𝐶 → (𝐸 = {𝐴} ↔ 𝐸 = {𝐶})) |
| 24 | 23 | biimpa 476 |
. . . . . . . . . . 11
⊢ ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) → 𝐸 = {𝐶}) |
| 25 | 24 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∧ (𝐴 = 𝐶 ∧ 𝐸 = {𝐴})) → 𝐸 = {𝐶}) |
| 26 | | preq1 4733 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 = 𝐶 → {𝐴, 𝐷} = {𝐶, 𝐷}) |
| 27 | 26 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) → {𝐴, 𝐷} = {𝐶, 𝐷}) |
| 28 | 27 | eqeq2d 2748 |
. . . . . . . . . . . . 13
⊢ ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) → (𝐹 = {𝐴, 𝐷} ↔ 𝐹 = {𝐶, 𝐷})) |
| 29 | 28 | biimpcd 249 |
. . . . . . . . . . . 12
⊢ (𝐹 = {𝐴, 𝐷} → ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) → 𝐹 = {𝐶, 𝐷})) |
| 30 | 29 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) → ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) → 𝐹 = {𝐶, 𝐷})) |
| 31 | 30 | imp 406 |
. . . . . . . . . 10
⊢ (((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∧ (𝐴 = 𝐶 ∧ 𝐸 = {𝐴})) → 𝐹 = {𝐶, 𝐷}) |
| 32 | 25, 31 | jca 511 |
. . . . . . . . 9
⊢ (((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∧ (𝐴 = 𝐶 ∧ 𝐸 = {𝐴})) → (𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷})) |
| 33 | 32 | orcd 874 |
. . . . . . . 8
⊢ (((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∧ (𝐴 = 𝐶 ∧ 𝐸 = {𝐴})) → ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) |
| 34 | 21, 33 | jca 511 |
. . . . . . 7
⊢ (((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∧ (𝐴 = 𝐶 ∧ 𝐸 = {𝐴})) → ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})))) |
| 35 | 34 | orcd 874 |
. . . . . 6
⊢ (((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∧ (𝐴 = 𝐶 ∧ 𝐸 = {𝐴})) → (((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) ∨ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷 ∧ 𝐸 = {𝐶})))) |
| 36 | 35 | ex 412 |
. . . . 5
⊢ ((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) → ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) → (((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) ∨ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷 ∧ 𝐸 = {𝐶}))))) |
| 37 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}) → 𝐹 = {𝐴, 𝐵}) |
| 38 | 20, 37 | anim12i 613 |
. . . . . . . . . 10
⊢ (((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) ∧ (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵})) → (𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵})) |
| 39 | 38 | ancoms 458 |
. . . . . . . . 9
⊢ (((𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}) ∧ (𝐴 = 𝐶 ∧ 𝐸 = {𝐴})) → (𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵})) |
| 40 | 39 | orcd 874 |
. . . . . . . 8
⊢ (((𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}) ∧ (𝐴 = 𝐶 ∧ 𝐸 = {𝐴})) → ((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}))) |
| 41 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) → 𝐴 = 𝐶) |
| 42 | 41 | eqeq1d 2739 |
. . . . . . . . . . . 12
⊢ ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) → (𝐴 = 𝐷 ↔ 𝐶 = 𝐷)) |
| 43 | 42 | biimpcd 249 |
. . . . . . . . . . 11
⊢ (𝐴 = 𝐷 → ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) → 𝐶 = 𝐷)) |
| 44 | 43 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}) → ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) → 𝐶 = 𝐷)) |
| 45 | 44 | imp 406 |
. . . . . . . . 9
⊢ (((𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}) ∧ (𝐴 = 𝐶 ∧ 𝐸 = {𝐴})) → 𝐶 = 𝐷) |
| 46 | 23 | biimpd 229 |
. . . . . . . . . . . 12
⊢ (𝐴 = 𝐶 → (𝐸 = {𝐴} → 𝐸 = {𝐶})) |
| 47 | 46 | a1dd 50 |
. . . . . . . . . . 11
⊢ (𝐴 = 𝐶 → (𝐸 = {𝐴} → ((𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}) → 𝐸 = {𝐶}))) |
| 48 | 47 | imp 406 |
. . . . . . . . . 10
⊢ ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) → ((𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}) → 𝐸 = {𝐶})) |
| 49 | 48 | impcom 407 |
. . . . . . . . 9
⊢ (((𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}) ∧ (𝐴 = 𝐶 ∧ 𝐸 = {𝐴})) → 𝐸 = {𝐶}) |
| 50 | 45, 49 | jca 511 |
. . . . . . . 8
⊢ (((𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}) ∧ (𝐴 = 𝐶 ∧ 𝐸 = {𝐴})) → (𝐶 = 𝐷 ∧ 𝐸 = {𝐶})) |
| 51 | 40, 50 | jca 511 |
. . . . . . 7
⊢ (((𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}) ∧ (𝐴 = 𝐶 ∧ 𝐸 = {𝐴})) → (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷 ∧ 𝐸 = {𝐶}))) |
| 52 | 51 | olcd 875 |
. . . . . 6
⊢ (((𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}) ∧ (𝐴 = 𝐶 ∧ 𝐸 = {𝐴})) → (((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) ∨ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷 ∧ 𝐸 = {𝐶})))) |
| 53 | 52 | ex 412 |
. . . . 5
⊢ ((𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}) → ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) → (((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) ∨ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷 ∧ 𝐸 = {𝐶}))))) |
| 54 | 36, 53 | jaoi 858 |
. . . 4
⊢ (((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵})) → ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) → (((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) ∨ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷 ∧ 𝐸 = {𝐶}))))) |
| 55 | 54 | impcom 407 |
. . 3
⊢ (((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}))) → (((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) ∨ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷 ∧ 𝐸 = {𝐶})))) |
| 56 | | eqeq1 2741 |
. . . . . . . . . . . . 13
⊢ (𝐸 = {𝐶} → (𝐸 = {𝐴} ↔ {𝐶} = {𝐴})) |
| 57 | 4 | sneqr 4840 |
. . . . . . . . . . . . . 14
⊢ ({𝐶} = {𝐴} → 𝐶 = 𝐴) |
| 58 | 57 | eqcomd 2743 |
. . . . . . . . . . . . 13
⊢ ({𝐶} = {𝐴} → 𝐴 = 𝐶) |
| 59 | 56, 58 | biimtrdi 253 |
. . . . . . . . . . . 12
⊢ (𝐸 = {𝐶} → (𝐸 = {𝐴} → 𝐴 = 𝐶)) |
| 60 | 59 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) → (𝐸 = {𝐴} → 𝐴 = 𝐶)) |
| 61 | | eqeq1 2741 |
. . . . . . . . . . . . 13
⊢ (𝐸 = {𝐶, 𝐷} → (𝐸 = {𝐴} ↔ {𝐶, 𝐷} = {𝐴})) |
| 62 | 4, 5 | preqsn 4862 |
. . . . . . . . . . . . . 14
⊢ ({𝐶, 𝐷} = {𝐴} ↔ (𝐶 = 𝐷 ∧ 𝐷 = 𝐴)) |
| 63 | | eqtr 2760 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 = 𝐷 ∧ 𝐷 = 𝐴) → 𝐶 = 𝐴) |
| 64 | 63 | eqcomd 2743 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 = 𝐷 ∧ 𝐷 = 𝐴) → 𝐴 = 𝐶) |
| 65 | 62, 64 | sylbi 217 |
. . . . . . . . . . . . 13
⊢ ({𝐶, 𝐷} = {𝐴} → 𝐴 = 𝐶) |
| 66 | 61, 65 | biimtrdi 253 |
. . . . . . . . . . . 12
⊢ (𝐸 = {𝐶, 𝐷} → (𝐸 = {𝐴} → 𝐴 = 𝐶)) |
| 67 | 66 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}) → (𝐸 = {𝐴} → 𝐴 = 𝐶)) |
| 68 | 60, 67 | jaoi 858 |
. . . . . . . . . 10
⊢ (((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})) → (𝐸 = {𝐴} → 𝐴 = 𝐶)) |
| 69 | 68 | com12 32 |
. . . . . . . . 9
⊢ (𝐸 = {𝐴} → (((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})) → 𝐴 = 𝐶)) |
| 70 | 69 | adantl 481 |
. . . . . . . 8
⊢ ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) → (((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})) → 𝐴 = 𝐶)) |
| 71 | 70 | impcom 407 |
. . . . . . 7
⊢ ((((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})) ∧ (𝐴 = 𝐵 ∧ 𝐸 = {𝐴})) → 𝐴 = 𝐶) |
| 72 | | simpr 484 |
. . . . . . . 8
⊢ ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) → 𝐸 = {𝐴}) |
| 73 | 72 | adantl 481 |
. . . . . . 7
⊢ ((((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})) ∧ (𝐴 = 𝐵 ∧ 𝐸 = {𝐴})) → 𝐸 = {𝐴}) |
| 74 | 71, 73 | jca 511 |
. . . . . 6
⊢ ((((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})) ∧ (𝐴 = 𝐵 ∧ 𝐸 = {𝐴})) → (𝐴 = 𝐶 ∧ 𝐸 = {𝐴})) |
| 75 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) → 𝐴 = 𝐵) |
| 76 | 75 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) ∧ (𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷})) → 𝐴 = 𝐵) |
| 77 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐸 = {𝐴} → (𝐸 = {𝐶} ↔ {𝐴} = {𝐶})) |
| 78 | 1 | sneqr 4840 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝐴} = {𝐶} → 𝐴 = 𝐶) |
| 79 | 78 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝐴} = {𝐶} → 𝐶 = 𝐴) |
| 80 | 77, 79 | biimtrdi 253 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐸 = {𝐴} → (𝐸 = {𝐶} → 𝐶 = 𝐴)) |
| 81 | 80 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) → (𝐸 = {𝐶} → 𝐶 = 𝐴)) |
| 82 | 81 | impcom 407 |
. . . . . . . . . . . . . . 15
⊢ ((𝐸 = {𝐶} ∧ (𝐴 = 𝐵 ∧ 𝐸 = {𝐴})) → 𝐶 = 𝐴) |
| 83 | 82 | preq1d 4739 |
. . . . . . . . . . . . . 14
⊢ ((𝐸 = {𝐶} ∧ (𝐴 = 𝐵 ∧ 𝐸 = {𝐴})) → {𝐶, 𝐷} = {𝐴, 𝐷}) |
| 84 | 83 | eqeq2d 2748 |
. . . . . . . . . . . . 13
⊢ ((𝐸 = {𝐶} ∧ (𝐴 = 𝐵 ∧ 𝐸 = {𝐴})) → (𝐹 = {𝐶, 𝐷} ↔ 𝐹 = {𝐴, 𝐷})) |
| 85 | 84 | biimpd 229 |
. . . . . . . . . . . 12
⊢ ((𝐸 = {𝐶} ∧ (𝐴 = 𝐵 ∧ 𝐸 = {𝐴})) → (𝐹 = {𝐶, 𝐷} → 𝐹 = {𝐴, 𝐷})) |
| 86 | 85 | impancom 451 |
. . . . . . . . . . 11
⊢ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) → ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) → 𝐹 = {𝐴, 𝐷})) |
| 87 | 86 | impcom 407 |
. . . . . . . . . 10
⊢ (((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) ∧ (𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷})) → 𝐹 = {𝐴, 𝐷}) |
| 88 | 76, 87 | jca 511 |
. . . . . . . . 9
⊢ (((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) ∧ (𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷})) → (𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷})) |
| 89 | 88 | ex 412 |
. . . . . . . 8
⊢ ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) → ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) → (𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}))) |
| 90 | | eqcom 2744 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐷 = 𝐴 ↔ 𝐴 = 𝐷) |
| 91 | 90 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐷 = 𝐴 → 𝐴 = 𝐷) |
| 92 | 91 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐶 = 𝐷 ∧ 𝐷 = 𝐴) → 𝐴 = 𝐷) |
| 93 | 92 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐶 = 𝐷 ∧ 𝐷 = 𝐴) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐷) |
| 94 | 93 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐶 = 𝐷 ∧ 𝐷 = 𝐴) ∧ 𝐴 = 𝐵) ∧ 𝐹 = {𝐶}) → 𝐴 = 𝐷) |
| 95 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐶 = 𝐷 ∧ 𝐷 = 𝐴) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) |
| 96 | 64 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐶 = 𝐷 ∧ 𝐷 = 𝐴) → (𝐴 = 𝐵 ↔ 𝐶 = 𝐵)) |
| 97 | 96 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐶 = 𝐷 ∧ 𝐷 = 𝐴) ∧ 𝐴 = 𝐵) → 𝐶 = 𝐵) |
| 98 | 97 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐶 = 𝐷 ∧ 𝐷 = 𝐴) ∧ 𝐴 = 𝐵) → 𝐵 = 𝐶) |
| 99 | 1, 2 | preqsn 4862 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
| 100 | 95, 98, 99 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐶 = 𝐷 ∧ 𝐷 = 𝐴) ∧ 𝐴 = 𝐵) → {𝐴, 𝐵} = {𝐶}) |
| 101 | 100 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐶 = 𝐷 ∧ 𝐷 = 𝐴) ∧ 𝐴 = 𝐵) → {𝐶} = {𝐴, 𝐵}) |
| 102 | 101 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐶 = 𝐷 ∧ 𝐷 = 𝐴) ∧ 𝐴 = 𝐵) → (𝐹 = {𝐶} ↔ 𝐹 = {𝐴, 𝐵})) |
| 103 | 102 | biimpa 476 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐶 = 𝐷 ∧ 𝐷 = 𝐴) ∧ 𝐴 = 𝐵) ∧ 𝐹 = {𝐶}) → 𝐹 = {𝐴, 𝐵}) |
| 104 | 94, 103 | jca 511 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐶 = 𝐷 ∧ 𝐷 = 𝐴) ∧ 𝐴 = 𝐵) ∧ 𝐹 = {𝐶}) → (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵})) |
| 105 | 104 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐶 = 𝐷 ∧ 𝐷 = 𝐴) ∧ 𝐴 = 𝐵) → (𝐹 = {𝐶} → (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}))) |
| 106 | 105 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 = 𝐷 ∧ 𝐷 = 𝐴) → (𝐴 = 𝐵 → (𝐹 = {𝐶} → (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵})))) |
| 107 | 106 | com23 86 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 = 𝐷 ∧ 𝐷 = 𝐴) → (𝐹 = {𝐶} → (𝐴 = 𝐵 → (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵})))) |
| 108 | 62, 107 | sylbi 217 |
. . . . . . . . . . . . 13
⊢ ({𝐶, 𝐷} = {𝐴} → (𝐹 = {𝐶} → (𝐴 = 𝐵 → (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵})))) |
| 109 | 61, 108 | biimtrdi 253 |
. . . . . . . . . . . 12
⊢ (𝐸 = {𝐶, 𝐷} → (𝐸 = {𝐴} → (𝐹 = {𝐶} → (𝐴 = 𝐵 → (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}))))) |
| 110 | 109 | com23 86 |
. . . . . . . . . . 11
⊢ (𝐸 = {𝐶, 𝐷} → (𝐹 = {𝐶} → (𝐸 = {𝐴} → (𝐴 = 𝐵 → (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}))))) |
| 111 | 110 | imp 406 |
. . . . . . . . . 10
⊢ ((𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}) → (𝐸 = {𝐴} → (𝐴 = 𝐵 → (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵})))) |
| 112 | 111 | com13 88 |
. . . . . . . . 9
⊢ (𝐴 = 𝐵 → (𝐸 = {𝐴} → ((𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}) → (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵})))) |
| 113 | 112 | imp 406 |
. . . . . . . 8
⊢ ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) → ((𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}) → (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}))) |
| 114 | 89, 113 | orim12d 967 |
. . . . . . 7
⊢ ((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) → (((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})) → ((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵})))) |
| 115 | 114 | impcom 407 |
. . . . . 6
⊢ ((((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})) ∧ (𝐴 = 𝐵 ∧ 𝐸 = {𝐴})) → ((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}))) |
| 116 | 74, 115 | jca 511 |
. . . . 5
⊢ ((((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})) ∧ (𝐴 = 𝐵 ∧ 𝐸 = {𝐴})) → ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵})))) |
| 117 | 116 | ancoms 458 |
. . . 4
⊢ (((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) → ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵})))) |
| 118 | | eqeq1 2741 |
. . . . . . . . . . . . . . . 16
⊢ (𝐸 = {𝐶} → (𝐸 = {𝐴, 𝐵} ↔ {𝐶} = {𝐴, 𝐵})) |
| 119 | | eqcom 2744 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝐶} = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = {𝐶}) |
| 120 | 119, 99 | bitri 275 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝐶} = {𝐴, 𝐵} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
| 121 | | eqtr 2760 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
| 122 | 121 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) ∧ 𝐸 = {𝐶}) → 𝐴 = 𝐶) |
| 123 | 121 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐶 = 𝐴) |
| 124 | | sneq 4636 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐶 = 𝐴 → {𝐶} = {𝐴}) |
| 125 | 123, 124 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → {𝐶} = {𝐴}) |
| 126 | 125 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → (𝐸 = {𝐶} ↔ 𝐸 = {𝐴})) |
| 127 | 126 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) ∧ 𝐸 = {𝐶}) → 𝐸 = {𝐴}) |
| 128 | 122, 127 | jca 511 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) ∧ 𝐸 = {𝐶}) → (𝐴 = 𝐶 ∧ 𝐸 = {𝐴})) |
| 129 | 128 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → (𝐸 = {𝐶} → (𝐴 = 𝐶 ∧ 𝐸 = {𝐴}))) |
| 130 | 129 | a1i13 27 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐶 = 𝐷 → ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → (𝐹 = {𝐴} → (𝐸 = {𝐶} → (𝐴 = 𝐶 ∧ 𝐸 = {𝐴}))))) |
| 131 | 130 | com14 96 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐸 = {𝐶} → ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → (𝐹 = {𝐴} → (𝐶 = 𝐷 → (𝐴 = 𝐶 ∧ 𝐸 = {𝐴}))))) |
| 132 | 120, 131 | biimtrid 242 |
. . . . . . . . . . . . . . . 16
⊢ (𝐸 = {𝐶} → ({𝐶} = {𝐴, 𝐵} → (𝐹 = {𝐴} → (𝐶 = 𝐷 → (𝐴 = 𝐶 ∧ 𝐸 = {𝐴}))))) |
| 133 | 118, 132 | sylbid 240 |
. . . . . . . . . . . . . . 15
⊢ (𝐸 = {𝐶} → (𝐸 = {𝐴, 𝐵} → (𝐹 = {𝐴} → (𝐶 = 𝐷 → (𝐴 = 𝐶 ∧ 𝐸 = {𝐴}))))) |
| 134 | 133 | com24 95 |
. . . . . . . . . . . . . 14
⊢ (𝐸 = {𝐶} → (𝐶 = 𝐷 → (𝐹 = {𝐴} → (𝐸 = {𝐴, 𝐵} → (𝐴 = 𝐶 ∧ 𝐸 = {𝐴}))))) |
| 135 | 134 | impcom 407 |
. . . . . . . . . . . . 13
⊢ ((𝐶 = 𝐷 ∧ 𝐸 = {𝐶}) → (𝐹 = {𝐴} → (𝐸 = {𝐴, 𝐵} → (𝐴 = 𝐶 ∧ 𝐸 = {𝐴})))) |
| 136 | 135 | com13 88 |
. . . . . . . . . . . 12
⊢ (𝐸 = {𝐴, 𝐵} → (𝐹 = {𝐴} → ((𝐶 = 𝐷 ∧ 𝐸 = {𝐶}) → (𝐴 = 𝐶 ∧ 𝐸 = {𝐴})))) |
| 137 | 136 | imp 406 |
. . . . . . . . . . 11
⊢ ((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) → ((𝐶 = 𝐷 ∧ 𝐸 = {𝐶}) → (𝐴 = 𝐶 ∧ 𝐸 = {𝐴}))) |
| 138 | 59 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 = 𝐷 ∧ 𝐸 = {𝐶}) → (𝐸 = {𝐴} → 𝐴 = 𝐶)) |
| 139 | 138 | com12 32 |
. . . . . . . . . . . . . . 15
⊢ (𝐸 = {𝐴} → ((𝐶 = 𝐷 ∧ 𝐸 = {𝐶}) → 𝐴 = 𝐶)) |
| 140 | 139 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) → ((𝐶 = 𝐷 ∧ 𝐸 = {𝐶}) → 𝐴 = 𝐶)) |
| 141 | 140 | imp 406 |
. . . . . . . . . . . . 13
⊢ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∧ (𝐶 = 𝐷 ∧ 𝐸 = {𝐶})) → 𝐴 = 𝐶) |
| 142 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) → 𝐸 = {𝐴}) |
| 143 | 142 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∧ (𝐶 = 𝐷 ∧ 𝐸 = {𝐶})) → 𝐸 = {𝐴}) |
| 144 | 141, 143 | jca 511 |
. . . . . . . . . . . 12
⊢ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∧ (𝐶 = 𝐷 ∧ 𝐸 = {𝐶})) → (𝐴 = 𝐶 ∧ 𝐸 = {𝐴})) |
| 145 | 144 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) → ((𝐶 = 𝐷 ∧ 𝐸 = {𝐶}) → (𝐴 = 𝐶 ∧ 𝐸 = {𝐴}))) |
| 146 | 137, 145 | jaoi 858 |
. . . . . . . . . 10
⊢ (((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) ∨ (𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵})) → ((𝐶 = 𝐷 ∧ 𝐸 = {𝐶}) → (𝐴 = 𝐶 ∧ 𝐸 = {𝐴}))) |
| 147 | 146 | impcom 407 |
. . . . . . . . 9
⊢ (((𝐶 = 𝐷 ∧ 𝐸 = {𝐶}) ∧ ((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) ∨ (𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}))) → (𝐴 = 𝐶 ∧ 𝐸 = {𝐴})) |
| 148 | | eqeq1 2741 |
. . . . . . . . . . . . . . . 16
⊢ (𝐸 = {𝐴, 𝐵} → (𝐸 = {𝐶} ↔ {𝐴, 𝐵} = {𝐶})) |
| 149 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
| 150 | 149 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) ∧ 𝐶 = 𝐷) → 𝐴 = 𝐵) |
| 151 | 150 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) ∧ 𝐶 = 𝐷) ∧ 𝐹 = {𝐴}) → 𝐴 = 𝐵) |
| 152 | | eqtr 2760 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐴 = 𝐶 ∧ 𝐶 = 𝐷) → 𝐴 = 𝐷) |
| 153 | | dfsn2 4639 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ {𝐴} = {𝐴, 𝐴} |
| 154 | | preq2 4734 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐴 = 𝐷 → {𝐴, 𝐴} = {𝐴, 𝐷}) |
| 155 | 153, 154 | eqtrid 2789 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐴 = 𝐷 → {𝐴} = {𝐴, 𝐷}) |
| 156 | 152, 155 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 = 𝐶 ∧ 𝐶 = 𝐷) → {𝐴} = {𝐴, 𝐷}) |
| 157 | 156 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐴 = 𝐶 → (𝐶 = 𝐷 → {𝐴} = {𝐴, 𝐷})) |
| 158 | 121, 157 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → (𝐶 = 𝐷 → {𝐴} = {𝐴, 𝐷})) |
| 159 | 158 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) ∧ 𝐶 = 𝐷) → {𝐴} = {𝐴, 𝐷}) |
| 160 | 159 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) ∧ 𝐶 = 𝐷) → (𝐹 = {𝐴} ↔ 𝐹 = {𝐴, 𝐷})) |
| 161 | 160 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) ∧ 𝐶 = 𝐷) ∧ 𝐹 = {𝐴}) → 𝐹 = {𝐴, 𝐷}) |
| 162 | 151, 161 | jca 511 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) ∧ 𝐶 = 𝐷) ∧ 𝐹 = {𝐴}) → (𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷})) |
| 163 | 162 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) ∧ 𝐶 = 𝐷) → (𝐹 = {𝐴} → (𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}))) |
| 164 | 163 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → (𝐶 = 𝐷 → (𝐹 = {𝐴} → (𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷})))) |
| 165 | 164 | com23 86 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → (𝐹 = {𝐴} → (𝐶 = 𝐷 → (𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷})))) |
| 166 | 99, 165 | sylbi 217 |
. . . . . . . . . . . . . . . 16
⊢ ({𝐴, 𝐵} = {𝐶} → (𝐹 = {𝐴} → (𝐶 = 𝐷 → (𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷})))) |
| 167 | 148, 166 | biimtrdi 253 |
. . . . . . . . . . . . . . 15
⊢ (𝐸 = {𝐴, 𝐵} → (𝐸 = {𝐶} → (𝐹 = {𝐴} → (𝐶 = 𝐷 → (𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}))))) |
| 168 | 167 | com23 86 |
. . . . . . . . . . . . . 14
⊢ (𝐸 = {𝐴, 𝐵} → (𝐹 = {𝐴} → (𝐸 = {𝐶} → (𝐶 = 𝐷 → (𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}))))) |
| 169 | 168 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) → (𝐸 = {𝐶} → (𝐶 = 𝐷 → (𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷})))) |
| 170 | 169 | com13 88 |
. . . . . . . . . . . 12
⊢ (𝐶 = 𝐷 → (𝐸 = {𝐶} → ((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) → (𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷})))) |
| 171 | 170 | imp 406 |
. . . . . . . . . . 11
⊢ ((𝐶 = 𝐷 ∧ 𝐸 = {𝐶}) → ((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) → (𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}))) |
| 172 | 80 | imp 406 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐸 = {𝐴} ∧ 𝐸 = {𝐶}) → 𝐶 = 𝐴) |
| 173 | 172 | eqeq1d 2739 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐸 = {𝐴} ∧ 𝐸 = {𝐶}) → (𝐶 = 𝐷 ↔ 𝐴 = 𝐷)) |
| 174 | 173 | biimpd 229 |
. . . . . . . . . . . . . . 15
⊢ ((𝐸 = {𝐴} ∧ 𝐸 = {𝐶}) → (𝐶 = 𝐷 → 𝐴 = 𝐷)) |
| 175 | 174 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (𝐸 = {𝐴} → (𝐸 = {𝐶} → (𝐶 = 𝐷 → 𝐴 = 𝐷))) |
| 176 | 175 | com13 88 |
. . . . . . . . . . . . 13
⊢ (𝐶 = 𝐷 → (𝐸 = {𝐶} → (𝐸 = {𝐴} → 𝐴 = 𝐷))) |
| 177 | 176 | imp 406 |
. . . . . . . . . . . 12
⊢ ((𝐶 = 𝐷 ∧ 𝐸 = {𝐶}) → (𝐸 = {𝐴} → 𝐴 = 𝐷)) |
| 178 | 177 | anim1d 611 |
. . . . . . . . . . 11
⊢ ((𝐶 = 𝐷 ∧ 𝐸 = {𝐶}) → ((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) → (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}))) |
| 179 | 171, 178 | orim12d 967 |
. . . . . . . . . 10
⊢ ((𝐶 = 𝐷 ∧ 𝐸 = {𝐶}) → (((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) ∨ (𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵})) → ((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵})))) |
| 180 | 179 | imp 406 |
. . . . . . . . 9
⊢ (((𝐶 = 𝐷 ∧ 𝐸 = {𝐶}) ∧ ((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) ∨ (𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}))) → ((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}))) |
| 181 | 147, 180 | jca 511 |
. . . . . . . 8
⊢ (((𝐶 = 𝐷 ∧ 𝐸 = {𝐶}) ∧ ((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) ∨ (𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}))) → ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵})))) |
| 182 | 181 | ex 412 |
. . . . . . 7
⊢ ((𝐶 = 𝐷 ∧ 𝐸 = {𝐶}) → (((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) ∨ (𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵})) → ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}))))) |
| 183 | 182 | com12 32 |
. . . . . 6
⊢ (((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) ∨ (𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵})) → ((𝐶 = 𝐷 ∧ 𝐸 = {𝐶}) → ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}))))) |
| 184 | 183 | orcoms 873 |
. . . . 5
⊢ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) → ((𝐶 = 𝐷 ∧ 𝐸 = {𝐶}) → ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}))))) |
| 185 | 184 | imp 406 |
. . . 4
⊢ ((((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷 ∧ 𝐸 = {𝐶})) → ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵})))) |
| 186 | 117, 185 | jaoi 858 |
. . 3
⊢ ((((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) ∨ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷 ∧ 𝐸 = {𝐶}))) → ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵})))) |
| 187 | 55, 186 | impbii 209 |
. 2
⊢ (((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵}))) ↔ (((𝐴 = 𝐵 ∧ 𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) ∨ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷 ∧ 𝐸 = {𝐶})))) |
| 188 | 13, 18, 187 | 3bitr4i 303 |
1
⊢
({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = 〈𝐸, 𝐹〉 ↔ ((𝐴 = 𝐶 ∧ 𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵 ∧ 𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷 ∧ 𝐹 = {𝐴, 𝐵})))) |