MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  propeqop Structured version   Visualization version   GIF version

Theorem propeqop 5389
Description: Equivalence for an ordered pair equal to a pair of ordered pairs. (Contributed by AV, 18-Sep-2020.) (Proof shortened by AV, 16-Jun-2022.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
snopeqop.a 𝐴 ∈ V
snopeqop.b 𝐵 ∈ V
propeqop.c 𝐶 ∈ V
propeqop.d 𝐷 ∈ V
propeqop.e 𝐸 ∈ V
propeqop.f 𝐹 ∈ V
Assertion
Ref Expression
propeqop ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ⟨𝐸, 𝐹⟩ ↔ ((𝐴 = 𝐶𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷𝐹 = {𝐴, 𝐵}))))

Proof of Theorem propeqop
StepHypRef Expression
1 snopeqop.a . . . . 5 𝐴 ∈ V
2 snopeqop.b . . . . 5 𝐵 ∈ V
31, 2opeqsn 5386 . . . 4 (⟨𝐴, 𝐵⟩ = {𝐸} ↔ (𝐴 = 𝐵𝐸 = {𝐴}))
4 propeqop.c . . . . 5 𝐶 ∈ V
5 propeqop.d . . . . 5 𝐷 ∈ V
6 propeqop.e . . . . 5 𝐸 ∈ V
7 propeqop.f . . . . 5 𝐹 ∈ V
84, 5, 6, 7opeqpr 5387 . . . 4 (⟨𝐶, 𝐷⟩ = {𝐸, 𝐹} ↔ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})))
93, 8anbi12i 628 . . 3 ((⟨𝐴, 𝐵⟩ = {𝐸} ∧ ⟨𝐶, 𝐷⟩ = {𝐸, 𝐹}) ↔ ((𝐴 = 𝐵𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))))
101, 2, 6, 7opeqpr 5387 . . . 4 (⟨𝐴, 𝐵⟩ = {𝐸, 𝐹} ↔ ((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})))
114, 5opeqsn 5386 . . . 4 (⟨𝐶, 𝐷⟩ = {𝐸} ↔ (𝐶 = 𝐷𝐸 = {𝐶}))
1210, 11anbi12i 628 . . 3 ((⟨𝐴, 𝐵⟩ = {𝐸, 𝐹} ∧ ⟨𝐶, 𝐷⟩ = {𝐸}) ↔ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷𝐸 = {𝐶})))
139, 12orbi12i 911 . 2 (((⟨𝐴, 𝐵⟩ = {𝐸} ∧ ⟨𝐶, 𝐷⟩ = {𝐸, 𝐹}) ∨ (⟨𝐴, 𝐵⟩ = {𝐸, 𝐹} ∧ ⟨𝐶, 𝐷⟩ = {𝐸})) ↔ (((𝐴 = 𝐵𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) ∨ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷𝐸 = {𝐶}))))
14 eqcom 2828 . . 3 ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ⟨𝐸, 𝐹⟩ ↔ ⟨𝐸, 𝐹⟩ = {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩})
15 opex 5348 . . . 4 𝐴, 𝐵⟩ ∈ V
16 opex 5348 . . . 4 𝐶, 𝐷⟩ ∈ V
176, 7, 15, 16opeqpr 5387 . . 3 (⟨𝐸, 𝐹⟩ = {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ↔ ((⟨𝐴, 𝐵⟩ = {𝐸} ∧ ⟨𝐶, 𝐷⟩ = {𝐸, 𝐹}) ∨ (⟨𝐴, 𝐵⟩ = {𝐸, 𝐹} ∧ ⟨𝐶, 𝐷⟩ = {𝐸})))
1814, 17bitri 277 . 2 ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ⟨𝐸, 𝐹⟩ ↔ ((⟨𝐴, 𝐵⟩ = {𝐸} ∧ ⟨𝐶, 𝐷⟩ = {𝐸, 𝐹}) ∨ (⟨𝐴, 𝐵⟩ = {𝐸, 𝐹} ∧ ⟨𝐶, 𝐷⟩ = {𝐸})))
19 simpl 485 . . . . . . . . 9 ((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) → 𝐴 = 𝐵)
20 simpr 487 . . . . . . . . 9 ((𝐴 = 𝐶𝐸 = {𝐴}) → 𝐸 = {𝐴})
2119, 20anim12i 614 . . . . . . . 8 (((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∧ (𝐴 = 𝐶𝐸 = {𝐴})) → (𝐴 = 𝐵𝐸 = {𝐴}))
22 sneq 4570 . . . . . . . . . . . . 13 (𝐴 = 𝐶 → {𝐴} = {𝐶})
2322eqeq2d 2832 . . . . . . . . . . . 12 (𝐴 = 𝐶 → (𝐸 = {𝐴} ↔ 𝐸 = {𝐶}))
2423biimpa 479 . . . . . . . . . . 11 ((𝐴 = 𝐶𝐸 = {𝐴}) → 𝐸 = {𝐶})
2524adantl 484 . . . . . . . . . 10 (((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∧ (𝐴 = 𝐶𝐸 = {𝐴})) → 𝐸 = {𝐶})
26 preq1 4662 . . . . . . . . . . . . . . 15 (𝐴 = 𝐶 → {𝐴, 𝐷} = {𝐶, 𝐷})
2726adantr 483 . . . . . . . . . . . . . 14 ((𝐴 = 𝐶𝐸 = {𝐴}) → {𝐴, 𝐷} = {𝐶, 𝐷})
2827eqeq2d 2832 . . . . . . . . . . . . 13 ((𝐴 = 𝐶𝐸 = {𝐴}) → (𝐹 = {𝐴, 𝐷} ↔ 𝐹 = {𝐶, 𝐷}))
2928biimpcd 251 . . . . . . . . . . . 12 (𝐹 = {𝐴, 𝐷} → ((𝐴 = 𝐶𝐸 = {𝐴}) → 𝐹 = {𝐶, 𝐷}))
3029adantl 484 . . . . . . . . . . 11 ((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) → ((𝐴 = 𝐶𝐸 = {𝐴}) → 𝐹 = {𝐶, 𝐷}))
3130imp 409 . . . . . . . . . 10 (((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∧ (𝐴 = 𝐶𝐸 = {𝐴})) → 𝐹 = {𝐶, 𝐷})
3225, 31jca 514 . . . . . . . . 9 (((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∧ (𝐴 = 𝐶𝐸 = {𝐴})) → (𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}))
3332orcd 869 . . . . . . . 8 (((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∧ (𝐴 = 𝐶𝐸 = {𝐴})) → ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})))
3421, 33jca 514 . . . . . . 7 (((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∧ (𝐴 = 𝐶𝐸 = {𝐴})) → ((𝐴 = 𝐵𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))))
3534orcd 869 . . . . . 6 (((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∧ (𝐴 = 𝐶𝐸 = {𝐴})) → (((𝐴 = 𝐵𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) ∨ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷𝐸 = {𝐶}))))
3635ex 415 . . . . 5 ((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) → ((𝐴 = 𝐶𝐸 = {𝐴}) → (((𝐴 = 𝐵𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) ∨ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷𝐸 = {𝐶})))))
37 simpr 487 . . . . . . . . . . 11 ((𝐴 = 𝐷𝐹 = {𝐴, 𝐵}) → 𝐹 = {𝐴, 𝐵})
3820, 37anim12i 614 . . . . . . . . . 10 (((𝐴 = 𝐶𝐸 = {𝐴}) ∧ (𝐴 = 𝐷𝐹 = {𝐴, 𝐵})) → (𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}))
3938ancoms 461 . . . . . . . . 9 (((𝐴 = 𝐷𝐹 = {𝐴, 𝐵}) ∧ (𝐴 = 𝐶𝐸 = {𝐴})) → (𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}))
4039orcd 869 . . . . . . . 8 (((𝐴 = 𝐷𝐹 = {𝐴, 𝐵}) ∧ (𝐴 = 𝐶𝐸 = {𝐴})) → ((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})))
41 simpl 485 . . . . . . . . . . . . 13 ((𝐴 = 𝐶𝐸 = {𝐴}) → 𝐴 = 𝐶)
4241eqeq1d 2823 . . . . . . . . . . . 12 ((𝐴 = 𝐶𝐸 = {𝐴}) → (𝐴 = 𝐷𝐶 = 𝐷))
4342biimpcd 251 . . . . . . . . . . 11 (𝐴 = 𝐷 → ((𝐴 = 𝐶𝐸 = {𝐴}) → 𝐶 = 𝐷))
4443adantr 483 . . . . . . . . . 10 ((𝐴 = 𝐷𝐹 = {𝐴, 𝐵}) → ((𝐴 = 𝐶𝐸 = {𝐴}) → 𝐶 = 𝐷))
4544imp 409 . . . . . . . . 9 (((𝐴 = 𝐷𝐹 = {𝐴, 𝐵}) ∧ (𝐴 = 𝐶𝐸 = {𝐴})) → 𝐶 = 𝐷)
4623biimpd 231 . . . . . . . . . . . 12 (𝐴 = 𝐶 → (𝐸 = {𝐴} → 𝐸 = {𝐶}))
4746a1dd 50 . . . . . . . . . . 11 (𝐴 = 𝐶 → (𝐸 = {𝐴} → ((𝐴 = 𝐷𝐹 = {𝐴, 𝐵}) → 𝐸 = {𝐶})))
4847imp 409 . . . . . . . . . 10 ((𝐴 = 𝐶𝐸 = {𝐴}) → ((𝐴 = 𝐷𝐹 = {𝐴, 𝐵}) → 𝐸 = {𝐶}))
4948impcom 410 . . . . . . . . 9 (((𝐴 = 𝐷𝐹 = {𝐴, 𝐵}) ∧ (𝐴 = 𝐶𝐸 = {𝐴})) → 𝐸 = {𝐶})
5045, 49jca 514 . . . . . . . 8 (((𝐴 = 𝐷𝐹 = {𝐴, 𝐵}) ∧ (𝐴 = 𝐶𝐸 = {𝐴})) → (𝐶 = 𝐷𝐸 = {𝐶}))
5140, 50jca 514 . . . . . . 7 (((𝐴 = 𝐷𝐹 = {𝐴, 𝐵}) ∧ (𝐴 = 𝐶𝐸 = {𝐴})) → (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷𝐸 = {𝐶})))
5251olcd 870 . . . . . 6 (((𝐴 = 𝐷𝐹 = {𝐴, 𝐵}) ∧ (𝐴 = 𝐶𝐸 = {𝐴})) → (((𝐴 = 𝐵𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) ∨ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷𝐸 = {𝐶}))))
5352ex 415 . . . . 5 ((𝐴 = 𝐷𝐹 = {𝐴, 𝐵}) → ((𝐴 = 𝐶𝐸 = {𝐴}) → (((𝐴 = 𝐵𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) ∨ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷𝐸 = {𝐶})))))
5436, 53jaoi 853 . . . 4 (((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷𝐹 = {𝐴, 𝐵})) → ((𝐴 = 𝐶𝐸 = {𝐴}) → (((𝐴 = 𝐵𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) ∨ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷𝐸 = {𝐶})))))
5554impcom 410 . . 3 (((𝐴 = 𝐶𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷𝐹 = {𝐴, 𝐵}))) → (((𝐴 = 𝐵𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) ∨ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷𝐸 = {𝐶}))))
56 eqeq1 2825 . . . . . . . . . . . . 13 (𝐸 = {𝐶} → (𝐸 = {𝐴} ↔ {𝐶} = {𝐴}))
574sneqr 4764 . . . . . . . . . . . . . 14 ({𝐶} = {𝐴} → 𝐶 = 𝐴)
5857eqcomd 2827 . . . . . . . . . . . . 13 ({𝐶} = {𝐴} → 𝐴 = 𝐶)
5956, 58syl6bi 255 . . . . . . . . . . . 12 (𝐸 = {𝐶} → (𝐸 = {𝐴} → 𝐴 = 𝐶))
6059adantr 483 . . . . . . . . . . 11 ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) → (𝐸 = {𝐴} → 𝐴 = 𝐶))
61 eqeq1 2825 . . . . . . . . . . . . 13 (𝐸 = {𝐶, 𝐷} → (𝐸 = {𝐴} ↔ {𝐶, 𝐷} = {𝐴}))
624, 5preqsn 4785 . . . . . . . . . . . . . 14 ({𝐶, 𝐷} = {𝐴} ↔ (𝐶 = 𝐷𝐷 = 𝐴))
63 eqtr 2841 . . . . . . . . . . . . . . 15 ((𝐶 = 𝐷𝐷 = 𝐴) → 𝐶 = 𝐴)
6463eqcomd 2827 . . . . . . . . . . . . . 14 ((𝐶 = 𝐷𝐷 = 𝐴) → 𝐴 = 𝐶)
6562, 64sylbi 219 . . . . . . . . . . . . 13 ({𝐶, 𝐷} = {𝐴} → 𝐴 = 𝐶)
6661, 65syl6bi 255 . . . . . . . . . . . 12 (𝐸 = {𝐶, 𝐷} → (𝐸 = {𝐴} → 𝐴 = 𝐶))
6766adantr 483 . . . . . . . . . . 11 ((𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}) → (𝐸 = {𝐴} → 𝐴 = 𝐶))
6860, 67jaoi 853 . . . . . . . . . 10 (((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})) → (𝐸 = {𝐴} → 𝐴 = 𝐶))
6968com12 32 . . . . . . . . 9 (𝐸 = {𝐴} → (((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})) → 𝐴 = 𝐶))
7069adantl 484 . . . . . . . 8 ((𝐴 = 𝐵𝐸 = {𝐴}) → (((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})) → 𝐴 = 𝐶))
7170impcom 410 . . . . . . 7 ((((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})) ∧ (𝐴 = 𝐵𝐸 = {𝐴})) → 𝐴 = 𝐶)
72 simpr 487 . . . . . . . 8 ((𝐴 = 𝐵𝐸 = {𝐴}) → 𝐸 = {𝐴})
7372adantl 484 . . . . . . 7 ((((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})) ∧ (𝐴 = 𝐵𝐸 = {𝐴})) → 𝐸 = {𝐴})
7471, 73jca 514 . . . . . 6 ((((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})) ∧ (𝐴 = 𝐵𝐸 = {𝐴})) → (𝐴 = 𝐶𝐸 = {𝐴}))
75 simpl 485 . . . . . . . . . . 11 ((𝐴 = 𝐵𝐸 = {𝐴}) → 𝐴 = 𝐵)
7675adantr 483 . . . . . . . . . 10 (((𝐴 = 𝐵𝐸 = {𝐴}) ∧ (𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷})) → 𝐴 = 𝐵)
77 eqeq1 2825 . . . . . . . . . . . . . . . . . 18 (𝐸 = {𝐴} → (𝐸 = {𝐶} ↔ {𝐴} = {𝐶}))
781sneqr 4764 . . . . . . . . . . . . . . . . . . 19 ({𝐴} = {𝐶} → 𝐴 = 𝐶)
7978eqcomd 2827 . . . . . . . . . . . . . . . . . 18 ({𝐴} = {𝐶} → 𝐶 = 𝐴)
8077, 79syl6bi 255 . . . . . . . . . . . . . . . . 17 (𝐸 = {𝐴} → (𝐸 = {𝐶} → 𝐶 = 𝐴))
8180adantl 484 . . . . . . . . . . . . . . . 16 ((𝐴 = 𝐵𝐸 = {𝐴}) → (𝐸 = {𝐶} → 𝐶 = 𝐴))
8281impcom 410 . . . . . . . . . . . . . . 15 ((𝐸 = {𝐶} ∧ (𝐴 = 𝐵𝐸 = {𝐴})) → 𝐶 = 𝐴)
8382preq1d 4668 . . . . . . . . . . . . . 14 ((𝐸 = {𝐶} ∧ (𝐴 = 𝐵𝐸 = {𝐴})) → {𝐶, 𝐷} = {𝐴, 𝐷})
8483eqeq2d 2832 . . . . . . . . . . . . 13 ((𝐸 = {𝐶} ∧ (𝐴 = 𝐵𝐸 = {𝐴})) → (𝐹 = {𝐶, 𝐷} ↔ 𝐹 = {𝐴, 𝐷}))
8584biimpd 231 . . . . . . . . . . . 12 ((𝐸 = {𝐶} ∧ (𝐴 = 𝐵𝐸 = {𝐴})) → (𝐹 = {𝐶, 𝐷} → 𝐹 = {𝐴, 𝐷}))
8685impancom 454 . . . . . . . . . . 11 ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) → ((𝐴 = 𝐵𝐸 = {𝐴}) → 𝐹 = {𝐴, 𝐷}))
8786impcom 410 . . . . . . . . . 10 (((𝐴 = 𝐵𝐸 = {𝐴}) ∧ (𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷})) → 𝐹 = {𝐴, 𝐷})
8876, 87jca 514 . . . . . . . . 9 (((𝐴 = 𝐵𝐸 = {𝐴}) ∧ (𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷})) → (𝐴 = 𝐵𝐹 = {𝐴, 𝐷}))
8988ex 415 . . . . . . . 8 ((𝐴 = 𝐵𝐸 = {𝐴}) → ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) → (𝐴 = 𝐵𝐹 = {𝐴, 𝐷})))
90 eqcom 2828 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 = 𝐴𝐴 = 𝐷)
9190biimpi 218 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 = 𝐴𝐴 = 𝐷)
9291adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 = 𝐷𝐷 = 𝐴) → 𝐴 = 𝐷)
9392adantr 483 . . . . . . . . . . . . . . . . . . 19 (((𝐶 = 𝐷𝐷 = 𝐴) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐷)
9493adantr 483 . . . . . . . . . . . . . . . . . 18 ((((𝐶 = 𝐷𝐷 = 𝐴) ∧ 𝐴 = 𝐵) ∧ 𝐹 = {𝐶}) → 𝐴 = 𝐷)
95 simpr 487 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶 = 𝐷𝐷 = 𝐴) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
9664eqeq1d 2823 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐶 = 𝐷𝐷 = 𝐴) → (𝐴 = 𝐵𝐶 = 𝐵))
9796biimpa 479 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐶 = 𝐷𝐷 = 𝐴) ∧ 𝐴 = 𝐵) → 𝐶 = 𝐵)
9897eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶 = 𝐷𝐷 = 𝐴) ∧ 𝐴 = 𝐵) → 𝐵 = 𝐶)
991, 2preqsn 4785 . . . . . . . . . . . . . . . . . . . . . 22 ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵𝐵 = 𝐶))
10095, 98, 99sylanbrc 585 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 = 𝐷𝐷 = 𝐴) ∧ 𝐴 = 𝐵) → {𝐴, 𝐵} = {𝐶})
101100eqcomd 2827 . . . . . . . . . . . . . . . . . . . 20 (((𝐶 = 𝐷𝐷 = 𝐴) ∧ 𝐴 = 𝐵) → {𝐶} = {𝐴, 𝐵})
102101eqeq2d 2832 . . . . . . . . . . . . . . . . . . 19 (((𝐶 = 𝐷𝐷 = 𝐴) ∧ 𝐴 = 𝐵) → (𝐹 = {𝐶} ↔ 𝐹 = {𝐴, 𝐵}))
103102biimpa 479 . . . . . . . . . . . . . . . . . 18 ((((𝐶 = 𝐷𝐷 = 𝐴) ∧ 𝐴 = 𝐵) ∧ 𝐹 = {𝐶}) → 𝐹 = {𝐴, 𝐵})
10494, 103jca 514 . . . . . . . . . . . . . . . . 17 ((((𝐶 = 𝐷𝐷 = 𝐴) ∧ 𝐴 = 𝐵) ∧ 𝐹 = {𝐶}) → (𝐴 = 𝐷𝐹 = {𝐴, 𝐵}))
105104ex 415 . . . . . . . . . . . . . . . 16 (((𝐶 = 𝐷𝐷 = 𝐴) ∧ 𝐴 = 𝐵) → (𝐹 = {𝐶} → (𝐴 = 𝐷𝐹 = {𝐴, 𝐵})))
106105ex 415 . . . . . . . . . . . . . . 15 ((𝐶 = 𝐷𝐷 = 𝐴) → (𝐴 = 𝐵 → (𝐹 = {𝐶} → (𝐴 = 𝐷𝐹 = {𝐴, 𝐵}))))
107106com23 86 . . . . . . . . . . . . . 14 ((𝐶 = 𝐷𝐷 = 𝐴) → (𝐹 = {𝐶} → (𝐴 = 𝐵 → (𝐴 = 𝐷𝐹 = {𝐴, 𝐵}))))
10862, 107sylbi 219 . . . . . . . . . . . . 13 ({𝐶, 𝐷} = {𝐴} → (𝐹 = {𝐶} → (𝐴 = 𝐵 → (𝐴 = 𝐷𝐹 = {𝐴, 𝐵}))))
10961, 108syl6bi 255 . . . . . . . . . . . 12 (𝐸 = {𝐶, 𝐷} → (𝐸 = {𝐴} → (𝐹 = {𝐶} → (𝐴 = 𝐵 → (𝐴 = 𝐷𝐹 = {𝐴, 𝐵})))))
110109com23 86 . . . . . . . . . . 11 (𝐸 = {𝐶, 𝐷} → (𝐹 = {𝐶} → (𝐸 = {𝐴} → (𝐴 = 𝐵 → (𝐴 = 𝐷𝐹 = {𝐴, 𝐵})))))
111110imp 409 . . . . . . . . . 10 ((𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}) → (𝐸 = {𝐴} → (𝐴 = 𝐵 → (𝐴 = 𝐷𝐹 = {𝐴, 𝐵}))))
112111com13 88 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐸 = {𝐴} → ((𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}) → (𝐴 = 𝐷𝐹 = {𝐴, 𝐵}))))
113112imp 409 . . . . . . . 8 ((𝐴 = 𝐵𝐸 = {𝐴}) → ((𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}) → (𝐴 = 𝐷𝐹 = {𝐴, 𝐵})))
11489, 113orim12d 961 . . . . . . 7 ((𝐴 = 𝐵𝐸 = {𝐴}) → (((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})) → ((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷𝐹 = {𝐴, 𝐵}))))
115114impcom 410 . . . . . 6 ((((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})) ∧ (𝐴 = 𝐵𝐸 = {𝐴})) → ((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷𝐹 = {𝐴, 𝐵})))
11674, 115jca 514 . . . . 5 ((((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶})) ∧ (𝐴 = 𝐵𝐸 = {𝐴})) → ((𝐴 = 𝐶𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷𝐹 = {𝐴, 𝐵}))))
117116ancoms 461 . . . 4 (((𝐴 = 𝐵𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) → ((𝐴 = 𝐶𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷𝐹 = {𝐴, 𝐵}))))
118 eqeq1 2825 . . . . . . . . . . . . . . . 16 (𝐸 = {𝐶} → (𝐸 = {𝐴, 𝐵} ↔ {𝐶} = {𝐴, 𝐵}))
119 eqcom 2828 . . . . . . . . . . . . . . . . . 18 ({𝐶} = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = {𝐶})
120119, 99bitri 277 . . . . . . . . . . . . . . . . 17 ({𝐶} = {𝐴, 𝐵} ↔ (𝐴 = 𝐵𝐵 = 𝐶))
121 eqtr 2841 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 = 𝐵𝐵 = 𝐶) → 𝐴 = 𝐶)
122121adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 = 𝐵𝐵 = 𝐶) ∧ 𝐸 = {𝐶}) → 𝐴 = 𝐶)
123121eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 = 𝐵𝐵 = 𝐶) → 𝐶 = 𝐴)
124 sneq 4570 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐶 = 𝐴 → {𝐶} = {𝐴})
125123, 124syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 = 𝐵𝐵 = 𝐶) → {𝐶} = {𝐴})
126125eqeq2d 2832 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 = 𝐵𝐵 = 𝐶) → (𝐸 = {𝐶} ↔ 𝐸 = {𝐴}))
127126biimpa 479 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 = 𝐵𝐵 = 𝐶) ∧ 𝐸 = {𝐶}) → 𝐸 = {𝐴})
128122, 127jca 514 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 = 𝐵𝐵 = 𝐶) ∧ 𝐸 = {𝐶}) → (𝐴 = 𝐶𝐸 = {𝐴}))
129128ex 415 . . . . . . . . . . . . . . . . . . 19 ((𝐴 = 𝐵𝐵 = 𝐶) → (𝐸 = {𝐶} → (𝐴 = 𝐶𝐸 = {𝐴})))
130129a1i13 27 . . . . . . . . . . . . . . . . . 18 (𝐶 = 𝐷 → ((𝐴 = 𝐵𝐵 = 𝐶) → (𝐹 = {𝐴} → (𝐸 = {𝐶} → (𝐴 = 𝐶𝐸 = {𝐴})))))
131130com14 96 . . . . . . . . . . . . . . . . 17 (𝐸 = {𝐶} → ((𝐴 = 𝐵𝐵 = 𝐶) → (𝐹 = {𝐴} → (𝐶 = 𝐷 → (𝐴 = 𝐶𝐸 = {𝐴})))))
132120, 131syl5bi 244 . . . . . . . . . . . . . . . 16 (𝐸 = {𝐶} → ({𝐶} = {𝐴, 𝐵} → (𝐹 = {𝐴} → (𝐶 = 𝐷 → (𝐴 = 𝐶𝐸 = {𝐴})))))
133118, 132sylbid 242 . . . . . . . . . . . . . . 15 (𝐸 = {𝐶} → (𝐸 = {𝐴, 𝐵} → (𝐹 = {𝐴} → (𝐶 = 𝐷 → (𝐴 = 𝐶𝐸 = {𝐴})))))
134133com24 95 . . . . . . . . . . . . . 14 (𝐸 = {𝐶} → (𝐶 = 𝐷 → (𝐹 = {𝐴} → (𝐸 = {𝐴, 𝐵} → (𝐴 = 𝐶𝐸 = {𝐴})))))
135134impcom 410 . . . . . . . . . . . . 13 ((𝐶 = 𝐷𝐸 = {𝐶}) → (𝐹 = {𝐴} → (𝐸 = {𝐴, 𝐵} → (𝐴 = 𝐶𝐸 = {𝐴}))))
136135com13 88 . . . . . . . . . . . 12 (𝐸 = {𝐴, 𝐵} → (𝐹 = {𝐴} → ((𝐶 = 𝐷𝐸 = {𝐶}) → (𝐴 = 𝐶𝐸 = {𝐴}))))
137136imp 409 . . . . . . . . . . 11 ((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) → ((𝐶 = 𝐷𝐸 = {𝐶}) → (𝐴 = 𝐶𝐸 = {𝐴})))
13859adantl 484 . . . . . . . . . . . . . . . 16 ((𝐶 = 𝐷𝐸 = {𝐶}) → (𝐸 = {𝐴} → 𝐴 = 𝐶))
139138com12 32 . . . . . . . . . . . . . . 15 (𝐸 = {𝐴} → ((𝐶 = 𝐷𝐸 = {𝐶}) → 𝐴 = 𝐶))
140139adantr 483 . . . . . . . . . . . . . 14 ((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) → ((𝐶 = 𝐷𝐸 = {𝐶}) → 𝐴 = 𝐶))
141140imp 409 . . . . . . . . . . . . 13 (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∧ (𝐶 = 𝐷𝐸 = {𝐶})) → 𝐴 = 𝐶)
142 simpl 485 . . . . . . . . . . . . . 14 ((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) → 𝐸 = {𝐴})
143142adantr 483 . . . . . . . . . . . . 13 (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∧ (𝐶 = 𝐷𝐸 = {𝐶})) → 𝐸 = {𝐴})
144141, 143jca 514 . . . . . . . . . . . 12 (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∧ (𝐶 = 𝐷𝐸 = {𝐶})) → (𝐴 = 𝐶𝐸 = {𝐴}))
145144ex 415 . . . . . . . . . . 11 ((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) → ((𝐶 = 𝐷𝐸 = {𝐶}) → (𝐴 = 𝐶𝐸 = {𝐴})))
146137, 145jaoi 853 . . . . . . . . . 10 (((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) ∨ (𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵})) → ((𝐶 = 𝐷𝐸 = {𝐶}) → (𝐴 = 𝐶𝐸 = {𝐴})))
147146impcom 410 . . . . . . . . 9 (((𝐶 = 𝐷𝐸 = {𝐶}) ∧ ((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) ∨ (𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}))) → (𝐴 = 𝐶𝐸 = {𝐴}))
148 eqeq1 2825 . . . . . . . . . . . . . . . 16 (𝐸 = {𝐴, 𝐵} → (𝐸 = {𝐶} ↔ {𝐴, 𝐵} = {𝐶}))
149 simpl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 = 𝐵𝐵 = 𝐶) → 𝐴 = 𝐵)
150149adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 = 𝐵𝐵 = 𝐶) ∧ 𝐶 = 𝐷) → 𝐴 = 𝐵)
151150adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 = 𝐵𝐵 = 𝐶) ∧ 𝐶 = 𝐷) ∧ 𝐹 = {𝐴}) → 𝐴 = 𝐵)
152 eqtr 2841 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 = 𝐶𝐶 = 𝐷) → 𝐴 = 𝐷)
153 dfsn2 4573 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 {𝐴} = {𝐴, 𝐴}
154 preq2 4663 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴 = 𝐷 → {𝐴, 𝐴} = {𝐴, 𝐷})
155153, 154syl5eq 2868 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 = 𝐷 → {𝐴} = {𝐴, 𝐷})
156152, 155syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 = 𝐶𝐶 = 𝐷) → {𝐴} = {𝐴, 𝐷})
157156ex 415 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 = 𝐶 → (𝐶 = 𝐷 → {𝐴} = {𝐴, 𝐷}))
158121, 157syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 = 𝐵𝐵 = 𝐶) → (𝐶 = 𝐷 → {𝐴} = {𝐴, 𝐷}))
159158imp 409 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 = 𝐵𝐵 = 𝐶) ∧ 𝐶 = 𝐷) → {𝐴} = {𝐴, 𝐷})
160159eqeq2d 2832 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 = 𝐵𝐵 = 𝐶) ∧ 𝐶 = 𝐷) → (𝐹 = {𝐴} ↔ 𝐹 = {𝐴, 𝐷}))
161160biimpa 479 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 = 𝐵𝐵 = 𝐶) ∧ 𝐶 = 𝐷) ∧ 𝐹 = {𝐴}) → 𝐹 = {𝐴, 𝐷})
162151, 161jca 514 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 = 𝐵𝐵 = 𝐶) ∧ 𝐶 = 𝐷) ∧ 𝐹 = {𝐴}) → (𝐴 = 𝐵𝐹 = {𝐴, 𝐷}))
163162ex 415 . . . . . . . . . . . . . . . . . . 19 (((𝐴 = 𝐵𝐵 = 𝐶) ∧ 𝐶 = 𝐷) → (𝐹 = {𝐴} → (𝐴 = 𝐵𝐹 = {𝐴, 𝐷})))
164163ex 415 . . . . . . . . . . . . . . . . . 18 ((𝐴 = 𝐵𝐵 = 𝐶) → (𝐶 = 𝐷 → (𝐹 = {𝐴} → (𝐴 = 𝐵𝐹 = {𝐴, 𝐷}))))
165164com23 86 . . . . . . . . . . . . . . . . 17 ((𝐴 = 𝐵𝐵 = 𝐶) → (𝐹 = {𝐴} → (𝐶 = 𝐷 → (𝐴 = 𝐵𝐹 = {𝐴, 𝐷}))))
16699, 165sylbi 219 . . . . . . . . . . . . . . . 16 ({𝐴, 𝐵} = {𝐶} → (𝐹 = {𝐴} → (𝐶 = 𝐷 → (𝐴 = 𝐵𝐹 = {𝐴, 𝐷}))))
167148, 166syl6bi 255 . . . . . . . . . . . . . . 15 (𝐸 = {𝐴, 𝐵} → (𝐸 = {𝐶} → (𝐹 = {𝐴} → (𝐶 = 𝐷 → (𝐴 = 𝐵𝐹 = {𝐴, 𝐷})))))
168167com23 86 . . . . . . . . . . . . . 14 (𝐸 = {𝐴, 𝐵} → (𝐹 = {𝐴} → (𝐸 = {𝐶} → (𝐶 = 𝐷 → (𝐴 = 𝐵𝐹 = {𝐴, 𝐷})))))
169168imp 409 . . . . . . . . . . . . 13 ((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) → (𝐸 = {𝐶} → (𝐶 = 𝐷 → (𝐴 = 𝐵𝐹 = {𝐴, 𝐷}))))
170169com13 88 . . . . . . . . . . . 12 (𝐶 = 𝐷 → (𝐸 = {𝐶} → ((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) → (𝐴 = 𝐵𝐹 = {𝐴, 𝐷}))))
171170imp 409 . . . . . . . . . . 11 ((𝐶 = 𝐷𝐸 = {𝐶}) → ((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) → (𝐴 = 𝐵𝐹 = {𝐴, 𝐷})))
17280imp 409 . . . . . . . . . . . . . . . . 17 ((𝐸 = {𝐴} ∧ 𝐸 = {𝐶}) → 𝐶 = 𝐴)
173172eqeq1d 2823 . . . . . . . . . . . . . . . 16 ((𝐸 = {𝐴} ∧ 𝐸 = {𝐶}) → (𝐶 = 𝐷𝐴 = 𝐷))
174173biimpd 231 . . . . . . . . . . . . . . 15 ((𝐸 = {𝐴} ∧ 𝐸 = {𝐶}) → (𝐶 = 𝐷𝐴 = 𝐷))
175174ex 415 . . . . . . . . . . . . . 14 (𝐸 = {𝐴} → (𝐸 = {𝐶} → (𝐶 = 𝐷𝐴 = 𝐷)))
176175com13 88 . . . . . . . . . . . . 13 (𝐶 = 𝐷 → (𝐸 = {𝐶} → (𝐸 = {𝐴} → 𝐴 = 𝐷)))
177176imp 409 . . . . . . . . . . . 12 ((𝐶 = 𝐷𝐸 = {𝐶}) → (𝐸 = {𝐴} → 𝐴 = 𝐷))
178177anim1d 612 . . . . . . . . . . 11 ((𝐶 = 𝐷𝐸 = {𝐶}) → ((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) → (𝐴 = 𝐷𝐹 = {𝐴, 𝐵})))
179171, 178orim12d 961 . . . . . . . . . 10 ((𝐶 = 𝐷𝐸 = {𝐶}) → (((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) ∨ (𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵})) → ((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷𝐹 = {𝐴, 𝐵}))))
180179imp 409 . . . . . . . . 9 (((𝐶 = 𝐷𝐸 = {𝐶}) ∧ ((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) ∨ (𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}))) → ((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷𝐹 = {𝐴, 𝐵})))
181147, 180jca 514 . . . . . . . 8 (((𝐶 = 𝐷𝐸 = {𝐶}) ∧ ((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) ∨ (𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}))) → ((𝐴 = 𝐶𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷𝐹 = {𝐴, 𝐵}))))
182181ex 415 . . . . . . 7 ((𝐶 = 𝐷𝐸 = {𝐶}) → (((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) ∨ (𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵})) → ((𝐴 = 𝐶𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷𝐹 = {𝐴, 𝐵})))))
183182com12 32 . . . . . 6 (((𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴}) ∨ (𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵})) → ((𝐶 = 𝐷𝐸 = {𝐶}) → ((𝐴 = 𝐶𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷𝐹 = {𝐴, 𝐵})))))
184183orcoms 868 . . . . 5 (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) → ((𝐶 = 𝐷𝐸 = {𝐶}) → ((𝐴 = 𝐶𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷𝐹 = {𝐴, 𝐵})))))
185184imp 409 . . . 4 ((((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷𝐸 = {𝐶})) → ((𝐴 = 𝐶𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷𝐹 = {𝐴, 𝐵}))))
186117, 185jaoi 853 . . 3 ((((𝐴 = 𝐵𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) ∨ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷𝐸 = {𝐶}))) → ((𝐴 = 𝐶𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷𝐹 = {𝐴, 𝐵}))))
18755, 186impbii 211 . 2 (((𝐴 = 𝐶𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷𝐹 = {𝐴, 𝐵}))) ↔ (((𝐴 = 𝐵𝐸 = {𝐴}) ∧ ((𝐸 = {𝐶} ∧ 𝐹 = {𝐶, 𝐷}) ∨ (𝐸 = {𝐶, 𝐷} ∧ 𝐹 = {𝐶}))) ∨ (((𝐸 = {𝐴} ∧ 𝐹 = {𝐴, 𝐵}) ∨ (𝐸 = {𝐴, 𝐵} ∧ 𝐹 = {𝐴})) ∧ (𝐶 = 𝐷𝐸 = {𝐶}))))
18813, 18, 1873bitr4i 305 1 ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ⟨𝐸, 𝐹⟩ ↔ ((𝐴 = 𝐶𝐸 = {𝐴}) ∧ ((𝐴 = 𝐵𝐹 = {𝐴, 𝐷}) ∨ (𝐴 = 𝐷𝐹 = {𝐴, 𝐵}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  Vcvv 3494  {csn 4560  {cpr 4562  cop 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567
This theorem is referenced by:  propssopi  5390  fun2dmnopgexmpl  43477
  Copyright terms: Public domain W3C validator