![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashinfxadd | Structured version Visualization version GIF version |
Description: The extended real addition of the size of an infinite set with the size of an arbitrary set yields plus infinity. (Contributed by Alexander van der Vekens, 20-Dec-2017.) |
Ref | Expression |
---|---|
hashinfxadd | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashnn0pnf 14298 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) ∈ ℕ0 ∨ (♯‘𝐴) = +∞)) | |
2 | df-nel 3047 | . . . . . . . . 9 ⊢ ((♯‘𝐴) ∉ ℕ0 ↔ ¬ (♯‘𝐴) ∈ ℕ0) | |
3 | 2 | anbi2i 623 | . . . . . . . 8 ⊢ ((((♯‘𝐴) = +∞ ∨ (♯‘𝐴) ∈ ℕ0) ∧ (♯‘𝐴) ∉ ℕ0) ↔ (((♯‘𝐴) = +∞ ∨ (♯‘𝐴) ∈ ℕ0) ∧ ¬ (♯‘𝐴) ∈ ℕ0)) |
4 | pm5.61 999 | . . . . . . . 8 ⊢ ((((♯‘𝐴) = +∞ ∨ (♯‘𝐴) ∈ ℕ0) ∧ ¬ (♯‘𝐴) ∈ ℕ0) ↔ ((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0)) | |
5 | 3, 4 | sylbb 218 | . . . . . . 7 ⊢ ((((♯‘𝐴) = +∞ ∨ (♯‘𝐴) ∈ ℕ0) ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0)) |
6 | 5 | ex 413 | . . . . . 6 ⊢ (((♯‘𝐴) = +∞ ∨ (♯‘𝐴) ∈ ℕ0) → ((♯‘𝐴) ∉ ℕ0 → ((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0))) |
7 | 6 | orcoms 870 | . . . . 5 ⊢ (((♯‘𝐴) ∈ ℕ0 ∨ (♯‘𝐴) = +∞) → ((♯‘𝐴) ∉ ℕ0 → ((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0))) |
8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) ∉ ℕ0 → ((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0))) |
9 | 8 | imp 407 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0)) |
10 | 9 | 3adant2 1131 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0)) |
11 | oveq1 7412 | . . . . 5 ⊢ ((♯‘𝐴) = +∞ → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = (+∞ +𝑒 (♯‘𝐵))) | |
12 | hashxrcl 14313 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑊 → (♯‘𝐵) ∈ ℝ*) | |
13 | hashnemnf 14300 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑊 → (♯‘𝐵) ≠ -∞) | |
14 | 12, 13 | jca 512 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑊 → ((♯‘𝐵) ∈ ℝ* ∧ (♯‘𝐵) ≠ -∞)) |
15 | 14 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐵) ∈ ℝ* ∧ (♯‘𝐵) ≠ -∞)) |
16 | xaddpnf2 13202 | . . . . . 6 ⊢ (((♯‘𝐵) ∈ ℝ* ∧ (♯‘𝐵) ≠ -∞) → (+∞ +𝑒 (♯‘𝐵)) = +∞) | |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → (+∞ +𝑒 (♯‘𝐵)) = +∞) |
18 | 11, 17 | sylan9eqr 2794 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (♯‘𝐴) ∉ ℕ0) ∧ (♯‘𝐴) = +∞) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞) |
19 | 18 | expcom 414 | . . 3 ⊢ ((♯‘𝐴) = +∞ → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)) |
20 | 19 | adantr 481 | . 2 ⊢ (((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)) |
21 | 10, 20 | mpcom 38 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 845 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∉ wnel 3046 ‘cfv 6540 (class class class)co 7405 +∞cpnf 11241 -∞cmnf 11242 ℝ*cxr 11243 ℕ0cn0 12468 +𝑒 cxad 13086 ♯chash 14286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-xadd 13089 df-hash 14287 |
This theorem is referenced by: hashunx 14342 |
Copyright terms: Public domain | W3C validator |