![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashinfxadd | Structured version Visualization version GIF version |
Description: The extended real addition of the size of an infinite set with the size of an arbitrary set yields plus infinity. (Contributed by Alexander van der Vekens, 20-Dec-2017.) |
Ref | Expression |
---|---|
hashinfxadd | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashnn0pnf 13421 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) ∈ ℕ0 ∨ (♯‘𝐴) = +∞)) | |
2 | df-nel 3102 | . . . . . . . . 9 ⊢ ((♯‘𝐴) ∉ ℕ0 ↔ ¬ (♯‘𝐴) ∈ ℕ0) | |
3 | 2 | anbi2i 618 | . . . . . . . 8 ⊢ ((((♯‘𝐴) = +∞ ∨ (♯‘𝐴) ∈ ℕ0) ∧ (♯‘𝐴) ∉ ℕ0) ↔ (((♯‘𝐴) = +∞ ∨ (♯‘𝐴) ∈ ℕ0) ∧ ¬ (♯‘𝐴) ∈ ℕ0)) |
4 | pm5.61 1030 | . . . . . . . 8 ⊢ ((((♯‘𝐴) = +∞ ∨ (♯‘𝐴) ∈ ℕ0) ∧ ¬ (♯‘𝐴) ∈ ℕ0) ↔ ((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0)) | |
5 | 3, 4 | sylbb 211 | . . . . . . 7 ⊢ ((((♯‘𝐴) = +∞ ∨ (♯‘𝐴) ∈ ℕ0) ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0)) |
6 | 5 | ex 403 | . . . . . 6 ⊢ (((♯‘𝐴) = +∞ ∨ (♯‘𝐴) ∈ ℕ0) → ((♯‘𝐴) ∉ ℕ0 → ((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0))) |
7 | 6 | orcoms 905 | . . . . 5 ⊢ (((♯‘𝐴) ∈ ℕ0 ∨ (♯‘𝐴) = +∞) → ((♯‘𝐴) ∉ ℕ0 → ((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0))) |
8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) ∉ ℕ0 → ((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0))) |
9 | 8 | imp 397 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0)) |
10 | 9 | 3adant2 1167 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0)) |
11 | oveq1 6911 | . . . . 5 ⊢ ((♯‘𝐴) = +∞ → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = (+∞ +𝑒 (♯‘𝐵))) | |
12 | hashxrcl 13437 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑊 → (♯‘𝐵) ∈ ℝ*) | |
13 | hashnemnf 13423 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑊 → (♯‘𝐵) ≠ -∞) | |
14 | 12, 13 | jca 509 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑊 → ((♯‘𝐵) ∈ ℝ* ∧ (♯‘𝐵) ≠ -∞)) |
15 | 14 | 3ad2ant2 1170 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐵) ∈ ℝ* ∧ (♯‘𝐵) ≠ -∞)) |
16 | xaddpnf2 12345 | . . . . . 6 ⊢ (((♯‘𝐵) ∈ ℝ* ∧ (♯‘𝐵) ≠ -∞) → (+∞ +𝑒 (♯‘𝐵)) = +∞) | |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → (+∞ +𝑒 (♯‘𝐵)) = +∞) |
18 | 11, 17 | sylan9eqr 2882 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (♯‘𝐴) ∉ ℕ0) ∧ (♯‘𝐴) = +∞) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞) |
19 | 18 | expcom 404 | . . 3 ⊢ ((♯‘𝐴) = +∞ → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)) |
20 | 19 | adantr 474 | . 2 ⊢ (((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)) |
21 | 10, 20 | mpcom 38 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∨ wo 880 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ≠ wne 2998 ∉ wnel 3101 ‘cfv 6122 (class class class)co 6904 +∞cpnf 10387 -∞cmnf 10388 ℝ*cxr 10389 ℕ0cn0 11617 +𝑒 cxad 12229 ♯chash 13409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-cnex 10307 ax-resscn 10308 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-addrcl 10312 ax-mulcl 10313 ax-mulrcl 10314 ax-mulcom 10315 ax-addass 10316 ax-mulass 10317 ax-distr 10318 ax-i2m1 10319 ax-1ne0 10320 ax-1rid 10321 ax-rnegex 10322 ax-rrecex 10323 ax-cnre 10324 ax-pre-lttri 10325 ax-pre-lttrn 10326 ax-pre-ltadd 10327 ax-pre-mulgt0 10328 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-nel 3102 df-ral 3121 df-rex 3122 df-reu 3123 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-int 4697 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-riota 6865 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-er 8008 df-en 8222 df-dom 8223 df-sdom 8224 df-fin 8225 df-card 9077 df-pnf 10392 df-mnf 10393 df-xr 10394 df-ltxr 10395 df-le 10396 df-sub 10586 df-neg 10587 df-nn 11350 df-n0 11618 df-xnn0 11690 df-z 11704 df-uz 11968 df-xadd 12232 df-hash 13410 |
This theorem is referenced by: hashunx 13464 |
Copyright terms: Public domain | W3C validator |