MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashinfxadd Structured version   Visualization version   GIF version

Theorem hashinfxadd 14100
Description: The extended real addition of the size of an infinite set with the size of an arbitrary set yields plus infinity. (Contributed by Alexander van der Vekens, 20-Dec-2017.)
Assertion
Ref Expression
hashinfxadd ((𝐴𝑉𝐵𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)

Proof of Theorem hashinfxadd
StepHypRef Expression
1 hashnn0pnf 14056 . . . . 5 (𝐴𝑉 → ((♯‘𝐴) ∈ ℕ0 ∨ (♯‘𝐴) = +∞))
2 df-nel 3050 . . . . . . . . 9 ((♯‘𝐴) ∉ ℕ0 ↔ ¬ (♯‘𝐴) ∈ ℕ0)
32anbi2i 623 . . . . . . . 8 ((((♯‘𝐴) = +∞ ∨ (♯‘𝐴) ∈ ℕ0) ∧ (♯‘𝐴) ∉ ℕ0) ↔ (((♯‘𝐴) = +∞ ∨ (♯‘𝐴) ∈ ℕ0) ∧ ¬ (♯‘𝐴) ∈ ℕ0))
4 pm5.61 998 . . . . . . . 8 ((((♯‘𝐴) = +∞ ∨ (♯‘𝐴) ∈ ℕ0) ∧ ¬ (♯‘𝐴) ∈ ℕ0) ↔ ((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0))
53, 4sylbb 218 . . . . . . 7 ((((♯‘𝐴) = +∞ ∨ (♯‘𝐴) ∈ ℕ0) ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0))
65ex 413 . . . . . 6 (((♯‘𝐴) = +∞ ∨ (♯‘𝐴) ∈ ℕ0) → ((♯‘𝐴) ∉ ℕ0 → ((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0)))
76orcoms 869 . . . . 5 (((♯‘𝐴) ∈ ℕ0 ∨ (♯‘𝐴) = +∞) → ((♯‘𝐴) ∉ ℕ0 → ((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0)))
81, 7syl 17 . . . 4 (𝐴𝑉 → ((♯‘𝐴) ∉ ℕ0 → ((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0)))
98imp 407 . . 3 ((𝐴𝑉 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0))
1093adant2 1130 . 2 ((𝐴𝑉𝐵𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0))
11 oveq1 7282 . . . . 5 ((♯‘𝐴) = +∞ → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = (+∞ +𝑒 (♯‘𝐵)))
12 hashxrcl 14072 . . . . . . . 8 (𝐵𝑊 → (♯‘𝐵) ∈ ℝ*)
13 hashnemnf 14058 . . . . . . . 8 (𝐵𝑊 → (♯‘𝐵) ≠ -∞)
1412, 13jca 512 . . . . . . 7 (𝐵𝑊 → ((♯‘𝐵) ∈ ℝ* ∧ (♯‘𝐵) ≠ -∞))
15143ad2ant2 1133 . . . . . 6 ((𝐴𝑉𝐵𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐵) ∈ ℝ* ∧ (♯‘𝐵) ≠ -∞))
16 xaddpnf2 12961 . . . . . 6 (((♯‘𝐵) ∈ ℝ* ∧ (♯‘𝐵) ≠ -∞) → (+∞ +𝑒 (♯‘𝐵)) = +∞)
1715, 16syl 17 . . . . 5 ((𝐴𝑉𝐵𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → (+∞ +𝑒 (♯‘𝐵)) = +∞)
1811, 17sylan9eqr 2800 . . . 4 (((𝐴𝑉𝐵𝑊 ∧ (♯‘𝐴) ∉ ℕ0) ∧ (♯‘𝐴) = +∞) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)
1918expcom 414 . . 3 ((♯‘𝐴) = +∞ → ((𝐴𝑉𝐵𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞))
2019adantr 481 . 2 (((♯‘𝐴) = +∞ ∧ ¬ (♯‘𝐴) ∈ ℕ0) → ((𝐴𝑉𝐵𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞))
2110, 20mpcom 38 1 ((𝐴𝑉𝐵𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wnel 3049  cfv 6433  (class class class)co 7275  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008  0cn0 12233   +𝑒 cxad 12846  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-xadd 12849  df-hash 14045
This theorem is referenced by:  hashunx  14101
  Copyright terms: Public domain W3C validator