Step | Hyp | Ref
| Expression |
1 | | ssequn2 4102 |
. . . . . 6
⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∪ 𝐵) = 𝐴) |
2 | | pweq 4534 |
. . . . . . 7
⊢ ((𝐴 ∪ 𝐵) = 𝐴 → 𝒫 (𝐴 ∪ 𝐵) = 𝒫 𝐴) |
3 | | eqimss 3962 |
. . . . . . 7
⊢
(𝒫 (𝐴 ∪
𝐵) = 𝒫 𝐴 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴) |
4 | 2, 3 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∪ 𝐵) = 𝐴 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴) |
5 | 1, 4 | sylbi 220 |
. . . . 5
⊢ (𝐵 ⊆ 𝐴 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴) |
6 | | ssequn1 4099 |
. . . . . 6
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
7 | | pweq 4534 |
. . . . . . 7
⊢ ((𝐴 ∪ 𝐵) = 𝐵 → 𝒫 (𝐴 ∪ 𝐵) = 𝒫 𝐵) |
8 | | eqimss 3962 |
. . . . . . 7
⊢
(𝒫 (𝐴 ∪
𝐵) = 𝒫 𝐵 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵) |
9 | 7, 8 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∪ 𝐵) = 𝐵 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵) |
10 | 6, 9 | sylbi 220 |
. . . . 5
⊢ (𝐴 ⊆ 𝐵 → 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵) |
11 | 5, 10 | orim12i 909 |
. . . 4
⊢ ((𝐵 ⊆ 𝐴 ∨ 𝐴 ⊆ 𝐵) → (𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴 ∨ 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵)) |
12 | 11 | orcoms 872 |
. . 3
⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) → (𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐴 ∨ 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵)) |
13 | | ssun 4108 |
. . 3
⊢
((𝒫 (𝐴 ∪
𝐵) ⊆ 𝒫 𝐴 ∨ 𝒫 (𝐴 ∪ 𝐵) ⊆ 𝒫 𝐵) → 𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵)) |
14 | 12, 13 | syl 17 |
. 2
⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) → 𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵)) |
15 | | vex 3417 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑥 ∈ V |
16 | 15 | snss 4704 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝐴 ↔ {𝑥} ⊆ 𝐴) |
17 | | vex 3417 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑦 ∈ V |
18 | 17 | snss 4704 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ 𝐵 ↔ {𝑦} ⊆ 𝐵) |
19 | | unss12 4101 |
. . . . . . . . . . . . . . . . . . 19
⊢ (({𝑥} ⊆ 𝐴 ∧ {𝑦} ⊆ 𝐵) → ({𝑥} ∪ {𝑦}) ⊆ (𝐴 ∪ 𝐵)) |
20 | 16, 18, 19 | syl2anb 601 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ({𝑥} ∪ {𝑦}) ⊆ (𝐴 ∪ 𝐵)) |
21 | | zfpair2 5328 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑥, 𝑦} ∈ V |
22 | 21 | elpw 4522 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑥, 𝑦} ∈ 𝒫 (𝐴 ∪ 𝐵) ↔ {𝑥, 𝑦} ⊆ (𝐴 ∪ 𝐵)) |
23 | | df-pr 4549 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑥, 𝑦} = ({𝑥} ∪ {𝑦}) |
24 | 23 | sseq1i 3934 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑥, 𝑦} ⊆ (𝐴 ∪ 𝐵) ↔ ({𝑥} ∪ {𝑦}) ⊆ (𝐴 ∪ 𝐵)) |
25 | 22, 24 | bitr2i 279 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝑥} ∪ {𝑦}) ⊆ (𝐴 ∪ 𝐵) ↔ {𝑥, 𝑦} ∈ 𝒫 (𝐴 ∪ 𝐵)) |
26 | 20, 25 | sylib 221 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ 𝒫 (𝐴 ∪ 𝐵)) |
27 | | ssel 3898 |
. . . . . . . . . . . . . . . . 17
⊢
(𝒫 (𝐴 ∪
𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) → ({𝑥, 𝑦} ∈ 𝒫 (𝐴 ∪ 𝐵) → {𝑥, 𝑦} ∈ (𝒫 𝐴 ∪ 𝒫 𝐵))) |
28 | 26, 27 | syl5 34 |
. . . . . . . . . . . . . . . 16
⊢
(𝒫 (𝐴 ∪
𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → {𝑥, 𝑦} ∈ (𝒫 𝐴 ∪ 𝒫 𝐵))) |
29 | 28 | expcomd 420 |
. . . . . . . . . . . . . . 15
⊢
(𝒫 (𝐴 ∪
𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) → (𝑦 ∈ 𝐵 → (𝑥 ∈ 𝐴 → {𝑥, 𝑦} ∈ (𝒫 𝐴 ∪ 𝒫 𝐵)))) |
30 | 29 | imp31 421 |
. . . . . . . . . . . . . 14
⊢
(((𝒫 (𝐴
∪ 𝐵) ⊆ (𝒫
𝐴 ∪ 𝒫 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → {𝑥, 𝑦} ∈ (𝒫 𝐴 ∪ 𝒫 𝐵)) |
31 | | elun 4068 |
. . . . . . . . . . . . . 14
⊢ ({𝑥, 𝑦} ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ ({𝑥, 𝑦} ∈ 𝒫 𝐴 ∨ {𝑥, 𝑦} ∈ 𝒫 𝐵)) |
32 | 30, 31 | sylib 221 |
. . . . . . . . . . . . 13
⊢
(((𝒫 (𝐴
∪ 𝐵) ⊆ (𝒫
𝐴 ∪ 𝒫 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ({𝑥, 𝑦} ∈ 𝒫 𝐴 ∨ {𝑥, 𝑦} ∈ 𝒫 𝐵)) |
33 | 21 | elpw 4522 |
. . . . . . . . . . . . . . . 16
⊢ ({𝑥, 𝑦} ∈ 𝒫 𝐴 ↔ {𝑥, 𝑦} ⊆ 𝐴) |
34 | 15, 17 | prss 4738 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ↔ {𝑥, 𝑦} ⊆ 𝐴) |
35 | 33, 34 | bitr4i 281 |
. . . . . . . . . . . . . . 15
⊢ ({𝑥, 𝑦} ∈ 𝒫 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
36 | 35 | simprbi 500 |
. . . . . . . . . . . . . 14
⊢ ({𝑥, 𝑦} ∈ 𝒫 𝐴 → 𝑦 ∈ 𝐴) |
37 | 21 | elpw 4522 |
. . . . . . . . . . . . . . . 16
⊢ ({𝑥, 𝑦} ∈ 𝒫 𝐵 ↔ {𝑥, 𝑦} ⊆ 𝐵) |
38 | 15, 17 | prss 4738 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵) |
39 | 37, 38 | bitr4i 281 |
. . . . . . . . . . . . . . 15
⊢ ({𝑥, 𝑦} ∈ 𝒫 𝐵 ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
40 | 39 | simplbi 501 |
. . . . . . . . . . . . . 14
⊢ ({𝑥, 𝑦} ∈ 𝒫 𝐵 → 𝑥 ∈ 𝐵) |
41 | 36, 40 | orim12i 909 |
. . . . . . . . . . . . 13
⊢ (({𝑥, 𝑦} ∈ 𝒫 𝐴 ∨ {𝑥, 𝑦} ∈ 𝒫 𝐵) → (𝑦 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) |
42 | 32, 41 | syl 17 |
. . . . . . . . . . . 12
⊢
(((𝒫 (𝐴
∪ 𝐵) ⊆ (𝒫
𝐴 ∪ 𝒫 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) |
43 | 42 | ord 864 |
. . . . . . . . . . 11
⊢
(((𝒫 (𝐴
∪ 𝐵) ⊆ (𝒫
𝐴 ∪ 𝒫 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (¬ 𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
44 | 43 | impancom 455 |
. . . . . . . . . 10
⊢
(((𝒫 (𝐴
∪ 𝐵) ⊆ (𝒫
𝐴 ∪ 𝒫 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ¬ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
45 | 44 | ssrdv 3912 |
. . . . . . . . 9
⊢
(((𝒫 (𝐴
∪ 𝐵) ⊆ (𝒫
𝐴 ∪ 𝒫 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ ¬ 𝑦 ∈ 𝐴) → 𝐴 ⊆ 𝐵) |
46 | 45 | exp31 423 |
. . . . . . . 8
⊢
(𝒫 (𝐴 ∪
𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) → (𝑦 ∈ 𝐵 → (¬ 𝑦 ∈ 𝐴 → 𝐴 ⊆ 𝐵))) |
47 | | con1b 362 |
. . . . . . . 8
⊢ ((¬
𝑦 ∈ 𝐴 → 𝐴 ⊆ 𝐵) ↔ (¬ 𝐴 ⊆ 𝐵 → 𝑦 ∈ 𝐴)) |
48 | 46, 47 | syl6ib 254 |
. . . . . . 7
⊢
(𝒫 (𝐴 ∪
𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) → (𝑦 ∈ 𝐵 → (¬ 𝐴 ⊆ 𝐵 → 𝑦 ∈ 𝐴))) |
49 | 48 | com23 86 |
. . . . . 6
⊢
(𝒫 (𝐴 ∪
𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) → (¬ 𝐴 ⊆ 𝐵 → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴))) |
50 | 49 | imp 410 |
. . . . 5
⊢
((𝒫 (𝐴 ∪
𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) ∧ ¬ 𝐴 ⊆ 𝐵) → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴)) |
51 | 50 | ssrdv 3912 |
. . . 4
⊢
((𝒫 (𝐴 ∪
𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐵 ⊆ 𝐴) |
52 | 51 | ex 416 |
. . 3
⊢
(𝒫 (𝐴 ∪
𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) → (¬ 𝐴 ⊆ 𝐵 → 𝐵 ⊆ 𝐴)) |
53 | 52 | orrd 863 |
. 2
⊢
(𝒫 (𝐴 ∪
𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
54 | 14, 53 | impbii 212 |
1
⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) ↔ 𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵)) |