![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.30OLD | Structured version Visualization version GIF version |
Description: Obsolete version of r19.30 3299 as of 18-Jun-2023. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
r19.30OLD | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralim 3129 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (¬ 𝜓 → 𝜑) → (∀𝑥 ∈ 𝐴 ¬ 𝜓 → ∀𝑥 ∈ 𝐴 𝜑)) | |
2 | orcom 865 | . . . 4 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) | |
3 | df-or 843 | . . . 4 ⊢ ((𝜓 ∨ 𝜑) ↔ (¬ 𝜓 → 𝜑)) | |
4 | 2, 3 | bitri 276 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜓 → 𝜑)) |
5 | 4 | ralbii 3132 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (¬ 𝜓 → 𝜑)) |
6 | orcom 865 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∨ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓) ↔ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓 ∨ ∀𝑥 ∈ 𝐴 𝜑)) | |
7 | dfrex2 3203 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓) | |
8 | 7 | orbi2i 907 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∨ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) |
9 | imor 848 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ¬ 𝜓 → ∀𝑥 ∈ 𝐴 𝜑) ↔ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓 ∨ ∀𝑥 ∈ 𝐴 𝜑)) | |
10 | 6, 8, 9 | 3bitr4i 304 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓) ↔ (∀𝑥 ∈ 𝐴 ¬ 𝜓 → ∀𝑥 ∈ 𝐴 𝜑)) |
11 | 1, 5, 10 | 3imtr4i 293 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 842 ∀wral 3105 ∃wrex 3106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-ex 1762 df-ral 3110 df-rex 3111 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |