MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.6 Structured version   Visualization version   GIF version

Theorem pm5.6 999
Description: Conjunction in antecedent versus disjunction in consequent. Theorem *5.6 of [WhiteheadRussell] p. 125. (Contributed by NM, 8-Jun-1994.)
Assertion
Ref Expression
pm5.6 (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓𝜒)))

Proof of Theorem pm5.6
StepHypRef Expression
1 impexp 454 . 2 (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ (𝜑 → (¬ 𝜓𝜒)))
2 df-or 845 . . 3 ((𝜓𝜒) ↔ (¬ 𝜓𝜒))
32imbi2i 339 . 2 ((𝜑 → (𝜓𝜒)) ↔ (𝜑 → (¬ 𝜓𝜒)))
41, 3bitr4i 281 1 (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845
This theorem is referenced by:  ssundif  4405  brdom3  9939  grothprim  10245  eliccelico  30510  elicoelioo  30511  ballotlemfc0  31824  ballotlemfcc  31825  elicc3  33739  ifpidg  40130  dfsucon  40162  icccncfext  42469
  Copyright terms: Public domain W3C validator