| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.6 | Structured version Visualization version GIF version | ||
| Description: Conjunction in antecedent versus disjunction in consequent. Theorem *5.6 of [WhiteheadRussell] p. 125. (Contributed by NM, 8-Jun-1994.) |
| Ref | Expression |
|---|---|
| pm5.6 | ⊢ (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impexp 450 | . 2 ⊢ (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ (𝜑 → (¬ 𝜓 → 𝜒))) | |
| 2 | df-or 849 | . . 3 ⊢ ((𝜓 ∨ 𝜒) ↔ (¬ 𝜓 → 𝜒)) | |
| 3 | 2 | imbi2i 336 | . 2 ⊢ ((𝜑 → (𝜓 ∨ 𝜒)) ↔ (𝜑 → (¬ 𝜓 → 𝜒))) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 |
| This theorem is referenced by: ssundif 4488 brdom3 10568 grothprim 10874 eliccelico 32779 elicoelioo 32780 ballotlemfc0 34495 ballotlemfcc 34496 elicc3 36318 faosnf0.11b 43440 ifpidg 43504 dfsucon 43536 icccncfext 45902 |
| Copyright terms: Public domain | W3C validator |