MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.6 Structured version   Visualization version   GIF version

Theorem pm5.6 998
Description: Conjunction in antecedent versus disjunction in consequent. Theorem *5.6 of [WhiteheadRussell] p. 125. (Contributed by NM, 8-Jun-1994.)
Assertion
Ref Expression
pm5.6 (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓𝜒)))

Proof of Theorem pm5.6
StepHypRef Expression
1 impexp 450 . 2 (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ (𝜑 → (¬ 𝜓𝜒)))
2 df-or 844 . . 3 ((𝜓𝜒) ↔ (¬ 𝜓𝜒))
32imbi2i 335 . 2 ((𝜑 → (𝜓𝜒)) ↔ (𝜑 → (¬ 𝜓𝜒)))
41, 3bitr4i 277 1 (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844
This theorem is referenced by:  ssundif  4415  brdom3  10215  grothprim  10521  eliccelico  31000  elicoelioo  31001  ballotlemfc0  32359  ballotlemfcc  32360  elicc3  34433  ifpidg  40996  dfsucon  41028  icccncfext  43318
  Copyright terms: Public domain W3C validator