MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom3 Structured version   Visualization version   GIF version

Theorem brdom3 10457
Description: Equivalence to a dominance relation. (Contributed by NM, 27-Mar-2007.)
Hypothesis
Ref Expression
brdom3.2 𝐵 ∈ V
Assertion
Ref Expression
brdom3 (𝐴𝐵 ↔ ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝐵,𝑓,𝑥,𝑦

Proof of Theorem brdom3
StepHypRef Expression
1 reldom 8901 . . . . . . . . 9 Rel ≼
21brrelex1i 5687 . . . . . . . 8 (𝐴𝐵𝐴 ∈ V)
3 0sdomg 9047 . . . . . . . 8 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
42, 3syl 17 . . . . . . 7 (𝐴𝐵 → (∅ ≺ 𝐴𝐴 ≠ ∅))
5 df-ne 2926 . . . . . . 7 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
64, 5bitrdi 287 . . . . . 6 (𝐴𝐵 → (∅ ≺ 𝐴 ↔ ¬ 𝐴 = ∅))
76biimpar 477 . . . . 5 ((𝐴𝐵 ∧ ¬ 𝐴 = ∅) → ∅ ≺ 𝐴)
8 fodomr 9069 . . . . . 6 ((∅ ≺ 𝐴𝐴𝐵) → ∃𝑓 𝑓:𝐵onto𝐴)
98ancoms 458 . . . . 5 ((𝐴𝐵 ∧ ∅ ≺ 𝐴) → ∃𝑓 𝑓:𝐵onto𝐴)
107, 9syldan 591 . . . 4 ((𝐴𝐵 ∧ ¬ 𝐴 = ∅) → ∃𝑓 𝑓:𝐵onto𝐴)
11 pm5.6 1003 . . . 4 (((𝐴𝐵 ∧ ¬ 𝐴 = ∅) → ∃𝑓 𝑓:𝐵onto𝐴) ↔ (𝐴𝐵 → (𝐴 = ∅ ∨ ∃𝑓 𝑓:𝐵onto𝐴)))
1210, 11mpbi 230 . . 3 (𝐴𝐵 → (𝐴 = ∅ ∨ ∃𝑓 𝑓:𝐵onto𝐴))
13 br0 5151 . . . . . . . 8 ¬ 𝑥𝑦
1413nex 1800 . . . . . . 7 ¬ ∃𝑦 𝑥𝑦
15 exmo 2535 . . . . . . 7 (∃𝑦 𝑥𝑦 ∨ ∃*𝑦 𝑥𝑦)
1614, 15mtpor 1770 . . . . . 6 ∃*𝑦 𝑥𝑦
1716ax-gen 1795 . . . . 5 𝑥∃*𝑦 𝑥𝑦
18 rzal 4468 . . . . 5 (𝐴 = ∅ → ∀𝑥𝐴𝑦𝐵 𝑦𝑥)
19 0ex 5257 . . . . . 6 ∅ ∈ V
20 breq 5104 . . . . . . . . 9 (𝑓 = ∅ → (𝑥𝑓𝑦𝑥𝑦))
2120mobidv 2542 . . . . . . . 8 (𝑓 = ∅ → (∃*𝑦 𝑥𝑓𝑦 ↔ ∃*𝑦 𝑥𝑦))
2221albidv 1920 . . . . . . 7 (𝑓 = ∅ → (∀𝑥∃*𝑦 𝑥𝑓𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑦))
23 breq 5104 . . . . . . . . 9 (𝑓 = ∅ → (𝑦𝑓𝑥𝑦𝑥))
2423rexbidv 3157 . . . . . . . 8 (𝑓 = ∅ → (∃𝑦𝐵 𝑦𝑓𝑥 ↔ ∃𝑦𝐵 𝑦𝑥))
2524ralbidv 3156 . . . . . . 7 (𝑓 = ∅ → (∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝑥))
2622, 25anbi12d 632 . . . . . 6 (𝑓 = ∅ → ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) ↔ (∀𝑥∃*𝑦 𝑥𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑥)))
2719, 26spcev 3569 . . . . 5 ((∀𝑥∃*𝑦 𝑥𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑥) → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
2817, 18, 27sylancr 587 . . . 4 (𝐴 = ∅ → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
29 fofun 6755 . . . . . . 7 (𝑓:𝐵onto𝐴 → Fun 𝑓)
30 dffun6 6511 . . . . . . . 8 (Fun 𝑓 ↔ (Rel 𝑓 ∧ ∀𝑥∃*𝑦 𝑥𝑓𝑦))
3130simprbi 496 . . . . . . 7 (Fun 𝑓 → ∀𝑥∃*𝑦 𝑥𝑓𝑦)
3229, 31syl 17 . . . . . 6 (𝑓:𝐵onto𝐴 → ∀𝑥∃*𝑦 𝑥𝑓𝑦)
33 dffo4 7057 . . . . . . 7 (𝑓:𝐵onto𝐴 ↔ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3433simprbi 496 . . . . . 6 (𝑓:𝐵onto𝐴 → ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥)
3532, 34jca 511 . . . . 5 (𝑓:𝐵onto𝐴 → (∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3635eximi 1835 . . . 4 (∃𝑓 𝑓:𝐵onto𝐴 → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3728, 36jaoi 857 . . 3 ((𝐴 = ∅ ∨ ∃𝑓 𝑓:𝐵onto𝐴) → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3812, 37syl 17 . 2 (𝐴𝐵 → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
39 inss1 4196 . . . . . . . . . . 11 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝑓
4039ssbri 5147 . . . . . . . . . 10 (𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦𝑥𝑓𝑦)
4140moimi 2538 . . . . . . . . 9 (∃*𝑦 𝑥𝑓𝑦 → ∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
4241alimi 1811 . . . . . . . 8 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → ∀𝑥∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
43 relinxp 5768 . . . . . . . . 9 Rel (𝑓 ∩ (𝐵 × 𝐴))
44 dffun6 6511 . . . . . . . . 9 (Fun (𝑓 ∩ (𝐵 × 𝐴)) ↔ (Rel (𝑓 ∩ (𝐵 × 𝐴)) ∧ ∀𝑥∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
4543, 44mpbiran 709 . . . . . . . 8 (Fun (𝑓 ∩ (𝐵 × 𝐴)) ↔ ∀𝑥∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
4642, 45sylibr 234 . . . . . . 7 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → Fun (𝑓 ∩ (𝐵 × 𝐴)))
4746funfnd 6531 . . . . . 6 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → (𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)))
48 rninxp 6140 . . . . . . 7 (ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥)
4948biimpri 228 . . . . . 6 (∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥 → ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴)
5047, 49anim12i 613 . . . . 5 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
51 df-fo 6505 . . . . 5 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴 ↔ ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
5250, 51sylibr 234 . . . 4 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → (𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴)
53 vex 3448 . . . . . . 7 𝑓 ∈ V
5453inex1 5267 . . . . . 6 (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
5554dmex 7865 . . . . 5 dom (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
5655fodom 10452 . . . 4 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)))
57 brdom3.2 . . . . . 6 𝐵 ∈ V
58 inss2 4197 . . . . . . . 8 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴)
59 dmss 5856 . . . . . . . 8 ((𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴) → dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴))
6058, 59ax-mp 5 . . . . . . 7 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴)
61 dmxpss 6132 . . . . . . 7 dom (𝐵 × 𝐴) ⊆ 𝐵
6260, 61sstri 3953 . . . . . 6 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵
63 ssdomg 8948 . . . . . 6 (𝐵 ∈ V → (dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵 → dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵))
6457, 62, 63mp2 9 . . . . 5 dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵
65 domtr 8955 . . . . 5 ((𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵) → 𝐴𝐵)
6664, 65mpan2 691 . . . 4 (𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) → 𝐴𝐵)
6752, 56, 663syl 18 . . 3 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
6867exlimiv 1930 . 2 (∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
6938, 68impbii 209 1 (𝐴𝐵 ↔ ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2531  wne 2925  wral 3044  wrex 3053  Vcvv 3444  cin 3910  wss 3911  c0 4292   class class class wbr 5102   × cxp 5629  dom cdm 5631  ran crn 5632  Rel wrel 5636  Fun wfun 6493   Fn wfn 6494  wf 6495  ontowfo 6497  cdom 8893  csdm 8894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-ac2 10392
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-card 9868  df-acn 9871  df-ac 10045
This theorem is referenced by:  brdom5  10458  brdom4  10459
  Copyright terms: Public domain W3C validator