MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom3 Structured version   Visualization version   GIF version

Theorem brdom3 10565
Description: Equivalence to a dominance relation. (Contributed by NM, 27-Mar-2007.)
Hypothesis
Ref Expression
brdom3.2 𝐵 ∈ V
Assertion
Ref Expression
brdom3 (𝐴𝐵 ↔ ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝐵,𝑓,𝑥,𝑦

Proof of Theorem brdom3
StepHypRef Expression
1 reldom 8989 . . . . . . . . 9 Rel ≼
21brrelex1i 5744 . . . . . . . 8 (𝐴𝐵𝐴 ∈ V)
3 0sdomg 9142 . . . . . . . 8 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
42, 3syl 17 . . . . . . 7 (𝐴𝐵 → (∅ ≺ 𝐴𝐴 ≠ ∅))
5 df-ne 2938 . . . . . . 7 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
64, 5bitrdi 287 . . . . . 6 (𝐴𝐵 → (∅ ≺ 𝐴 ↔ ¬ 𝐴 = ∅))
76biimpar 477 . . . . 5 ((𝐴𝐵 ∧ ¬ 𝐴 = ∅) → ∅ ≺ 𝐴)
8 fodomr 9166 . . . . . 6 ((∅ ≺ 𝐴𝐴𝐵) → ∃𝑓 𝑓:𝐵onto𝐴)
98ancoms 458 . . . . 5 ((𝐴𝐵 ∧ ∅ ≺ 𝐴) → ∃𝑓 𝑓:𝐵onto𝐴)
107, 9syldan 591 . . . 4 ((𝐴𝐵 ∧ ¬ 𝐴 = ∅) → ∃𝑓 𝑓:𝐵onto𝐴)
11 pm5.6 1003 . . . 4 (((𝐴𝐵 ∧ ¬ 𝐴 = ∅) → ∃𝑓 𝑓:𝐵onto𝐴) ↔ (𝐴𝐵 → (𝐴 = ∅ ∨ ∃𝑓 𝑓:𝐵onto𝐴)))
1210, 11mpbi 230 . . 3 (𝐴𝐵 → (𝐴 = ∅ ∨ ∃𝑓 𝑓:𝐵onto𝐴))
13 br0 5196 . . . . . . . 8 ¬ 𝑥𝑦
1413nex 1796 . . . . . . 7 ¬ ∃𝑦 𝑥𝑦
15 exmo 2539 . . . . . . 7 (∃𝑦 𝑥𝑦 ∨ ∃*𝑦 𝑥𝑦)
1614, 15mtpor 1766 . . . . . 6 ∃*𝑦 𝑥𝑦
1716ax-gen 1791 . . . . 5 𝑥∃*𝑦 𝑥𝑦
18 rzal 4514 . . . . 5 (𝐴 = ∅ → ∀𝑥𝐴𝑦𝐵 𝑦𝑥)
19 0ex 5312 . . . . . 6 ∅ ∈ V
20 breq 5149 . . . . . . . . 9 (𝑓 = ∅ → (𝑥𝑓𝑦𝑥𝑦))
2120mobidv 2546 . . . . . . . 8 (𝑓 = ∅ → (∃*𝑦 𝑥𝑓𝑦 ↔ ∃*𝑦 𝑥𝑦))
2221albidv 1917 . . . . . . 7 (𝑓 = ∅ → (∀𝑥∃*𝑦 𝑥𝑓𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑦))
23 breq 5149 . . . . . . . . 9 (𝑓 = ∅ → (𝑦𝑓𝑥𝑦𝑥))
2423rexbidv 3176 . . . . . . . 8 (𝑓 = ∅ → (∃𝑦𝐵 𝑦𝑓𝑥 ↔ ∃𝑦𝐵 𝑦𝑥))
2524ralbidv 3175 . . . . . . 7 (𝑓 = ∅ → (∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝑥))
2622, 25anbi12d 632 . . . . . 6 (𝑓 = ∅ → ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) ↔ (∀𝑥∃*𝑦 𝑥𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑥)))
2719, 26spcev 3605 . . . . 5 ((∀𝑥∃*𝑦 𝑥𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑥) → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
2817, 18, 27sylancr 587 . . . 4 (𝐴 = ∅ → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
29 fofun 6821 . . . . . . 7 (𝑓:𝐵onto𝐴 → Fun 𝑓)
30 dffun6 6575 . . . . . . . 8 (Fun 𝑓 ↔ (Rel 𝑓 ∧ ∀𝑥∃*𝑦 𝑥𝑓𝑦))
3130simprbi 496 . . . . . . 7 (Fun 𝑓 → ∀𝑥∃*𝑦 𝑥𝑓𝑦)
3229, 31syl 17 . . . . . 6 (𝑓:𝐵onto𝐴 → ∀𝑥∃*𝑦 𝑥𝑓𝑦)
33 dffo4 7122 . . . . . . 7 (𝑓:𝐵onto𝐴 ↔ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3433simprbi 496 . . . . . 6 (𝑓:𝐵onto𝐴 → ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥)
3532, 34jca 511 . . . . 5 (𝑓:𝐵onto𝐴 → (∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3635eximi 1831 . . . 4 (∃𝑓 𝑓:𝐵onto𝐴 → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3728, 36jaoi 857 . . 3 ((𝐴 = ∅ ∨ ∃𝑓 𝑓:𝐵onto𝐴) → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3812, 37syl 17 . 2 (𝐴𝐵 → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
39 inss1 4244 . . . . . . . . . . 11 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝑓
4039ssbri 5192 . . . . . . . . . 10 (𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦𝑥𝑓𝑦)
4140moimi 2542 . . . . . . . . 9 (∃*𝑦 𝑥𝑓𝑦 → ∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
4241alimi 1807 . . . . . . . 8 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → ∀𝑥∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
43 relinxp 5826 . . . . . . . . 9 Rel (𝑓 ∩ (𝐵 × 𝐴))
44 dffun6 6575 . . . . . . . . 9 (Fun (𝑓 ∩ (𝐵 × 𝐴)) ↔ (Rel (𝑓 ∩ (𝐵 × 𝐴)) ∧ ∀𝑥∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
4543, 44mpbiran 709 . . . . . . . 8 (Fun (𝑓 ∩ (𝐵 × 𝐴)) ↔ ∀𝑥∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
4642, 45sylibr 234 . . . . . . 7 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → Fun (𝑓 ∩ (𝐵 × 𝐴)))
4746funfnd 6598 . . . . . 6 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → (𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)))
48 rninxp 6200 . . . . . . 7 (ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥)
4948biimpri 228 . . . . . 6 (∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥 → ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴)
5047, 49anim12i 613 . . . . 5 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
51 df-fo 6568 . . . . 5 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴 ↔ ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
5250, 51sylibr 234 . . . 4 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → (𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴)
53 vex 3481 . . . . . . 7 𝑓 ∈ V
5453inex1 5322 . . . . . 6 (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
5554dmex 7931 . . . . 5 dom (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
5655fodom 10560 . . . 4 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)))
57 brdom3.2 . . . . . 6 𝐵 ∈ V
58 inss2 4245 . . . . . . . 8 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴)
59 dmss 5915 . . . . . . . 8 ((𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴) → dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴))
6058, 59ax-mp 5 . . . . . . 7 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴)
61 dmxpss 6192 . . . . . . 7 dom (𝐵 × 𝐴) ⊆ 𝐵
6260, 61sstri 4004 . . . . . 6 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵
63 ssdomg 9038 . . . . . 6 (𝐵 ∈ V → (dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵 → dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵))
6457, 62, 63mp2 9 . . . . 5 dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵
65 domtr 9045 . . . . 5 ((𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵) → 𝐴𝐵)
6664, 65mpan2 691 . . . 4 (𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) → 𝐴𝐵)
6752, 56, 663syl 18 . . 3 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
6867exlimiv 1927 . 2 (∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
6938, 68impbii 209 1 (𝐴𝐵 ↔ ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1534   = wceq 1536  wex 1775  wcel 2105  ∃*wmo 2535  wne 2937  wral 3058  wrex 3067  Vcvv 3477  cin 3961  wss 3962  c0 4338   class class class wbr 5147   × cxp 5686  dom cdm 5688  ran crn 5689  Rel wrel 5693  Fun wfun 6556   Fn wfn 6557  wf 6558  ontowfo 6560  cdom 8981  csdm 8982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-ac2 10500
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-card 9976  df-acn 9979  df-ac 10153
This theorem is referenced by:  brdom5  10566  brdom4  10567
  Copyright terms: Public domain W3C validator