MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom3 Structured version   Visualization version   GIF version

Theorem brdom3 9747
Description: Equivalence to a dominance relation. (Contributed by NM, 27-Mar-2007.)
Hypothesis
Ref Expression
brdom3.2 𝐵 ∈ V
Assertion
Ref Expression
brdom3 (𝐴𝐵 ↔ ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝐵,𝑓,𝑥,𝑦

Proof of Theorem brdom3
StepHypRef Expression
1 reldom 8311 . . . . . . . . 9 Rel ≼
21brrelex1i 5455 . . . . . . . 8 (𝐴𝐵𝐴 ∈ V)
3 0sdomg 8441 . . . . . . . 8 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
42, 3syl 17 . . . . . . 7 (𝐴𝐵 → (∅ ≺ 𝐴𝐴 ≠ ∅))
5 df-ne 2963 . . . . . . 7 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
64, 5syl6bb 279 . . . . . 6 (𝐴𝐵 → (∅ ≺ 𝐴 ↔ ¬ 𝐴 = ∅))
76biimpar 470 . . . . 5 ((𝐴𝐵 ∧ ¬ 𝐴 = ∅) → ∅ ≺ 𝐴)
8 fodomr 8463 . . . . . 6 ((∅ ≺ 𝐴𝐴𝐵) → ∃𝑓 𝑓:𝐵onto𝐴)
98ancoms 451 . . . . 5 ((𝐴𝐵 ∧ ∅ ≺ 𝐴) → ∃𝑓 𝑓:𝐵onto𝐴)
107, 9syldan 583 . . . 4 ((𝐴𝐵 ∧ ¬ 𝐴 = ∅) → ∃𝑓 𝑓:𝐵onto𝐴)
11 pm5.6 985 . . . 4 (((𝐴𝐵 ∧ ¬ 𝐴 = ∅) → ∃𝑓 𝑓:𝐵onto𝐴) ↔ (𝐴𝐵 → (𝐴 = ∅ ∨ ∃𝑓 𝑓:𝐵onto𝐴)))
1210, 11mpbi 222 . . 3 (𝐴𝐵 → (𝐴 = ∅ ∨ ∃𝑓 𝑓:𝐵onto𝐴))
13 br0 4975 . . . . . . . 8 ¬ 𝑥𝑦
1413nex 1764 . . . . . . 7 ¬ ∃𝑦 𝑥𝑦
15 exmo 2551 . . . . . . 7 (∃𝑦 𝑥𝑦 ∨ ∃*𝑦 𝑥𝑦)
1614, 15mtpor 1734 . . . . . 6 ∃*𝑦 𝑥𝑦
1716ax-gen 1759 . . . . 5 𝑥∃*𝑦 𝑥𝑦
18 rzal 4331 . . . . 5 (𝐴 = ∅ → ∀𝑥𝐴𝑦𝐵 𝑦𝑥)
19 0ex 5065 . . . . . 6 ∅ ∈ V
20 breq 4928 . . . . . . . . 9 (𝑓 = ∅ → (𝑥𝑓𝑦𝑥𝑦))
2120mobidv 2562 . . . . . . . 8 (𝑓 = ∅ → (∃*𝑦 𝑥𝑓𝑦 ↔ ∃*𝑦 𝑥𝑦))
2221albidv 1880 . . . . . . 7 (𝑓 = ∅ → (∀𝑥∃*𝑦 𝑥𝑓𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑦))
23 breq 4928 . . . . . . . . 9 (𝑓 = ∅ → (𝑦𝑓𝑥𝑦𝑥))
2423rexbidv 3237 . . . . . . . 8 (𝑓 = ∅ → (∃𝑦𝐵 𝑦𝑓𝑥 ↔ ∃𝑦𝐵 𝑦𝑥))
2524ralbidv 3142 . . . . . . 7 (𝑓 = ∅ → (∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝑥))
2622, 25anbi12d 622 . . . . . 6 (𝑓 = ∅ → ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) ↔ (∀𝑥∃*𝑦 𝑥𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑥)))
2719, 26spcev 3520 . . . . 5 ((∀𝑥∃*𝑦 𝑥𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑥) → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
2817, 18, 27sylancr 579 . . . 4 (𝐴 = ∅ → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
29 fofun 6418 . . . . . . 7 (𝑓:𝐵onto𝐴 → Fun 𝑓)
30 dffun6 6201 . . . . . . . 8 (Fun 𝑓 ↔ (Rel 𝑓 ∧ ∀𝑥∃*𝑦 𝑥𝑓𝑦))
3130simprbi 489 . . . . . . 7 (Fun 𝑓 → ∀𝑥∃*𝑦 𝑥𝑓𝑦)
3229, 31syl 17 . . . . . 6 (𝑓:𝐵onto𝐴 → ∀𝑥∃*𝑦 𝑥𝑓𝑦)
33 dffo4 6691 . . . . . . 7 (𝑓:𝐵onto𝐴 ↔ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3433simprbi 489 . . . . . 6 (𝑓:𝐵onto𝐴 → ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥)
3532, 34jca 504 . . . . 5 (𝑓:𝐵onto𝐴 → (∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3635eximi 1798 . . . 4 (∃𝑓 𝑓:𝐵onto𝐴 → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3728, 36jaoi 844 . . 3 ((𝐴 = ∅ ∨ ∃𝑓 𝑓:𝐵onto𝐴) → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3812, 37syl 17 . 2 (𝐴𝐵 → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
39 inss1 4087 . . . . . . . . . . 11 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝑓
4039ssbri 4971 . . . . . . . . . 10 (𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦𝑥𝑓𝑦)
4140moimi 2554 . . . . . . . . 9 (∃*𝑦 𝑥𝑓𝑦 → ∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
4241alimi 1775 . . . . . . . 8 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → ∀𝑥∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
43 relinxp 5534 . . . . . . . . 9 Rel (𝑓 ∩ (𝐵 × 𝐴))
44 dffun6 6201 . . . . . . . . 9 (Fun (𝑓 ∩ (𝐵 × 𝐴)) ↔ (Rel (𝑓 ∩ (𝐵 × 𝐴)) ∧ ∀𝑥∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
4543, 44mpbiran 697 . . . . . . . 8 (Fun (𝑓 ∩ (𝐵 × 𝐴)) ↔ ∀𝑥∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
4642, 45sylibr 226 . . . . . . 7 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → Fun (𝑓 ∩ (𝐵 × 𝐴)))
4746funfnd 6217 . . . . . 6 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → (𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)))
48 rninxp 5874 . . . . . . 7 (ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥)
4948biimpri 220 . . . . . 6 (∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥 → ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴)
5047, 49anim12i 604 . . . . 5 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
51 df-fo 6192 . . . . 5 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴 ↔ ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
5250, 51sylibr 226 . . . 4 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → (𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴)
53 vex 3413 . . . . . . 7 𝑓 ∈ V
5453inex1 5075 . . . . . 6 (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
5554dmex 7430 . . . . 5 dom (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
5655fodom 9741 . . . 4 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)))
57 brdom3.2 . . . . . 6 𝐵 ∈ V
58 inss2 4088 . . . . . . . 8 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴)
59 dmss 5618 . . . . . . . 8 ((𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴) → dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴))
6058, 59ax-mp 5 . . . . . . 7 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴)
61 dmxpss 5866 . . . . . . 7 dom (𝐵 × 𝐴) ⊆ 𝐵
6260, 61sstri 3862 . . . . . 6 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵
63 ssdomg 8351 . . . . . 6 (𝐵 ∈ V → (dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵 → dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵))
6457, 62, 63mp2 9 . . . . 5 dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵
65 domtr 8358 . . . . 5 ((𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵) → 𝐴𝐵)
6664, 65mpan2 679 . . . 4 (𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) → 𝐴𝐵)
6752, 56, 663syl 18 . . 3 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
6867exlimiv 1890 . 2 (∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
6938, 68impbii 201 1 (𝐴𝐵 ↔ ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 834  wal 1506   = wceq 1508  wex 1743  wcel 2051  ∃*wmo 2546  wne 2962  wral 3083  wrex 3084  Vcvv 3410  cin 3823  wss 3824  c0 4173   class class class wbr 4926   × cxp 5402  dom cdm 5404  ran crn 5405  Rel wrel 5409  Fun wfun 6180   Fn wfn 6181  wf 6182  ontowfo 6184  cdom 8303  csdm 8304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-ac2 9682
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-se 5364  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-isom 6195  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-1st 7500  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-er 8088  df-map 8207  df-en 8306  df-dom 8307  df-sdom 8308  df-card 9161  df-acn 9164  df-ac 9335
This theorem is referenced by:  brdom5  9748  brdom4  9749
  Copyright terms: Public domain W3C validator