Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccelico Structured version   Visualization version   GIF version

Theorem eliccelico 31734
Description: Relate elementhood to a closed interval with elementhood to the same closed-below, open-above interval or to its upper bound. (Contributed by Thierry Arnoux, 3-Jul-2017.)
Assertion
Ref Expression
eliccelico ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)))

Proof of Theorem eliccelico
StepHypRef Expression
1 simpl1 1192 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐴 ∈ ℝ*)
2 simpl2 1193 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐵 ∈ ℝ*)
3 simprl 770 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐶 ∈ (𝐴[,]𝐵))
4 elicc1 13317 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
54biimpa 478 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵))
65simp1d 1143 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ*)
71, 2, 3, 6syl21anc 837 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐶 ∈ ℝ*)
85simp3d 1145 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
91, 2, 3, 8syl21anc 837 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐶𝐵)
101, 2jca 513 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
11 simprr 772 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → ¬ 𝐶 ∈ (𝐴[,)𝐵))
125simp2d 1144 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
1310, 3, 12syl2anc 585 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐴𝐶)
14 elico1 13316 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
1514notbid 318 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐶 ∈ (𝐴[,)𝐵) ↔ ¬ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
1615biimpa 478 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) → ¬ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵))
17 df-3an 1090 . . . . . . . . . 10 ((𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) ↔ ((𝐶 ∈ ℝ*𝐴𝐶) ∧ 𝐶 < 𝐵))
1817notbii 320 . . . . . . . . 9 (¬ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) ↔ ¬ ((𝐶 ∈ ℝ*𝐴𝐶) ∧ 𝐶 < 𝐵))
19 imnan 401 . . . . . . . . 9 (((𝐶 ∈ ℝ*𝐴𝐶) → ¬ 𝐶 < 𝐵) ↔ ¬ ((𝐶 ∈ ℝ*𝐴𝐶) ∧ 𝐶 < 𝐵))
2018, 19bitr4i 278 . . . . . . . 8 (¬ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) ↔ ((𝐶 ∈ ℝ*𝐴𝐶) → ¬ 𝐶 < 𝐵))
2116, 20sylib 217 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝐶 ∈ ℝ*𝐴𝐶) → ¬ 𝐶 < 𝐵))
2221imp 408 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) ∧ (𝐶 ∈ ℝ*𝐴𝐶)) → ¬ 𝐶 < 𝐵)
2310, 11, 7, 13, 22syl22anc 838 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → ¬ 𝐶 < 𝐵)
24 xeqlelt 31733 . . . . . 6 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 = 𝐵 ↔ (𝐶𝐵 ∧ ¬ 𝐶 < 𝐵)))
2524biimpar 479 . . . . 5 (((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶𝐵 ∧ ¬ 𝐶 < 𝐵)) → 𝐶 = 𝐵)
267, 2, 9, 23, 25syl22anc 838 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐶 = 𝐵)
2726ex 414 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 = 𝐵))
28 pm5.6 1001 . . 3 (((𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 = 𝐵) ↔ (𝐶 ∈ (𝐴[,]𝐵) → (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)))
2927, 28sylib 217 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐶 ∈ (𝐴[,]𝐵) → (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)))
30 icossicc 13362 . . . . 5 (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)
31 simpr 486 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ (𝐴[,)𝐵))
3230, 31sselid 3946 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
33 simpr 486 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶 = 𝐵)
34 simpl2 1193 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐵 ∈ ℝ*)
3533, 34eqeltrd 2834 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶 ∈ ℝ*)
36 simpl3 1194 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐴𝐵)
3736, 33breqtrrd 5137 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐴𝐶)
3834xrleidd 13080 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐵𝐵)
3933, 38eqbrtrd 5131 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶𝐵)
40 simpl1 1192 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐴 ∈ ℝ*)
4140, 34, 4syl2anc 585 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
4235, 37, 39, 41mpbir3and 1343 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶 ∈ (𝐴[,]𝐵))
4332, 42jaodan 957 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
4443ex 414 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵) → 𝐶 ∈ (𝐴[,]𝐵)))
4529, 44impbid 211 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5109  (class class class)co 7361  *cxr 11196   < clt 11197  cle 11198  [,)cico 13275  [,]cicc 13276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-pre-lttri 11133  ax-pre-lttrn 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-po 5549  df-so 5550  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-ico 13279  df-icc 13280
This theorem is referenced by:  xrge0adddir  31939  esumcvg  32749
  Copyright terms: Public domain W3C validator