Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccelico Structured version   Visualization version   GIF version

Theorem eliccelico 30160
Description: Relate elementhood to a closed interval with elementhood to the same closed-below, open-above interval or to its upper bound. (Contributed by Thierry Arnoux, 3-Jul-2017.)
Assertion
Ref Expression
eliccelico ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)))

Proof of Theorem eliccelico
StepHypRef Expression
1 simpl1 1182 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐴 ∈ ℝ*)
2 simpl2 1183 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐵 ∈ ℝ*)
3 simprl 767 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐶 ∈ (𝐴[,]𝐵))
4 elicc1 12621 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
54biimpa 477 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵))
65simp1d 1133 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ*)
71, 2, 3, 6syl21anc 834 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐶 ∈ ℝ*)
85simp3d 1135 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
91, 2, 3, 8syl21anc 834 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐶𝐵)
101, 2jca 512 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
11 simprr 769 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → ¬ 𝐶 ∈ (𝐴[,)𝐵))
125simp2d 1134 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
1310, 3, 12syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐴𝐶)
14 elico1 12620 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
1514notbid 319 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐶 ∈ (𝐴[,)𝐵) ↔ ¬ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
1615biimpa 477 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) → ¬ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵))
17 df-3an 1080 . . . . . . . . . 10 ((𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) ↔ ((𝐶 ∈ ℝ*𝐴𝐶) ∧ 𝐶 < 𝐵))
1817notbii 321 . . . . . . . . 9 (¬ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) ↔ ¬ ((𝐶 ∈ ℝ*𝐴𝐶) ∧ 𝐶 < 𝐵))
19 imnan 400 . . . . . . . . 9 (((𝐶 ∈ ℝ*𝐴𝐶) → ¬ 𝐶 < 𝐵) ↔ ¬ ((𝐶 ∈ ℝ*𝐴𝐶) ∧ 𝐶 < 𝐵))
2018, 19bitr4i 279 . . . . . . . 8 (¬ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) ↔ ((𝐶 ∈ ℝ*𝐴𝐶) → ¬ 𝐶 < 𝐵))
2116, 20sylib 219 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝐶 ∈ ℝ*𝐴𝐶) → ¬ 𝐶 < 𝐵))
2221imp 407 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) ∧ (𝐶 ∈ ℝ*𝐴𝐶)) → ¬ 𝐶 < 𝐵)
2310, 11, 7, 13, 22syl22anc 835 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → ¬ 𝐶 < 𝐵)
24 xeqlelt 30159 . . . . . 6 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 = 𝐵 ↔ (𝐶𝐵 ∧ ¬ 𝐶 < 𝐵)))
2524biimpar 478 . . . . 5 (((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶𝐵 ∧ ¬ 𝐶 < 𝐵)) → 𝐶 = 𝐵)
267, 2, 9, 23, 25syl22anc 835 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐶 = 𝐵)
2726ex 413 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 = 𝐵))
28 pm5.6 994 . . 3 (((𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 = 𝐵) ↔ (𝐶 ∈ (𝐴[,]𝐵) → (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)))
2927, 28sylib 219 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐶 ∈ (𝐴[,]𝐵) → (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)))
30 icossicc 12663 . . . . 5 (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)
31 simpr 485 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ (𝐴[,)𝐵))
3230, 31sseldi 3882 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
33 simpr 485 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶 = 𝐵)
34 simpl2 1183 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐵 ∈ ℝ*)
3533, 34eqeltrd 2881 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶 ∈ ℝ*)
36 simpl3 1184 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐴𝐵)
3736, 33breqtrrd 4984 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐴𝐶)
3834xrleidd 12384 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐵𝐵)
3933, 38eqbrtrd 4978 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶𝐵)
40 simpl1 1182 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐴 ∈ ℝ*)
4140, 34, 4syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
4235, 37, 39, 41mpbir3and 1333 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶 ∈ (𝐴[,]𝐵))
4332, 42jaodan 950 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
4443ex 413 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵) → 𝐶 ∈ (𝐴[,]𝐵)))
4529, 44impbid 213 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3a 1078   = wceq 1520  wcel 2079   class class class wbr 4956  (class class class)co 7007  *cxr 10509   < clt 10510  cle 10511  [,)cico 12579  [,]cicc 12580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-cnex 10428  ax-resscn 10429  ax-pre-lttri 10446  ax-pre-lttrn 10447
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-po 5354  df-so 5355  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-ov 7010  df-oprab 7011  df-mpo 7012  df-er 8130  df-en 8348  df-dom 8349  df-sdom 8350  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-ico 12583  df-icc 12584
This theorem is referenced by:  xrge0adddir  30323  esumcvg  30918
  Copyright terms: Public domain W3C validator