Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccelico Structured version   Visualization version   GIF version

Theorem eliccelico 31098
Description: Relate elementhood to a closed interval with elementhood to the same closed-below, open-above interval or to its upper bound. (Contributed by Thierry Arnoux, 3-Jul-2017.)
Assertion
Ref Expression
eliccelico ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)))

Proof of Theorem eliccelico
StepHypRef Expression
1 simpl1 1190 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐴 ∈ ℝ*)
2 simpl2 1191 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐵 ∈ ℝ*)
3 simprl 768 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐶 ∈ (𝐴[,]𝐵))
4 elicc1 13123 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
54biimpa 477 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵))
65simp1d 1141 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ*)
71, 2, 3, 6syl21anc 835 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐶 ∈ ℝ*)
85simp3d 1143 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
91, 2, 3, 8syl21anc 835 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐶𝐵)
101, 2jca 512 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
11 simprr 770 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → ¬ 𝐶 ∈ (𝐴[,)𝐵))
125simp2d 1142 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
1310, 3, 12syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐴𝐶)
14 elico1 13122 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
1514notbid 318 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐶 ∈ (𝐴[,)𝐵) ↔ ¬ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
1615biimpa 477 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) → ¬ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵))
17 df-3an 1088 . . . . . . . . . 10 ((𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) ↔ ((𝐶 ∈ ℝ*𝐴𝐶) ∧ 𝐶 < 𝐵))
1817notbii 320 . . . . . . . . 9 (¬ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) ↔ ¬ ((𝐶 ∈ ℝ*𝐴𝐶) ∧ 𝐶 < 𝐵))
19 imnan 400 . . . . . . . . 9 (((𝐶 ∈ ℝ*𝐴𝐶) → ¬ 𝐶 < 𝐵) ↔ ¬ ((𝐶 ∈ ℝ*𝐴𝐶) ∧ 𝐶 < 𝐵))
2018, 19bitr4i 277 . . . . . . . 8 (¬ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) ↔ ((𝐶 ∈ ℝ*𝐴𝐶) → ¬ 𝐶 < 𝐵))
2116, 20sylib 217 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝐶 ∈ ℝ*𝐴𝐶) → ¬ 𝐶 < 𝐵))
2221imp 407 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) ∧ (𝐶 ∈ ℝ*𝐴𝐶)) → ¬ 𝐶 < 𝐵)
2310, 11, 7, 13, 22syl22anc 836 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → ¬ 𝐶 < 𝐵)
24 xeqlelt 31097 . . . . . 6 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 = 𝐵 ↔ (𝐶𝐵 ∧ ¬ 𝐶 < 𝐵)))
2524biimpar 478 . . . . 5 (((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶𝐵 ∧ ¬ 𝐶 < 𝐵)) → 𝐶 = 𝐵)
267, 2, 9, 23, 25syl22anc 836 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐶 = 𝐵)
2726ex 413 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 = 𝐵))
28 pm5.6 999 . . 3 (((𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 = 𝐵) ↔ (𝐶 ∈ (𝐴[,]𝐵) → (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)))
2927, 28sylib 217 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐶 ∈ (𝐴[,]𝐵) → (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)))
30 icossicc 13168 . . . . 5 (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)
31 simpr 485 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ (𝐴[,)𝐵))
3230, 31sselid 3919 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
33 simpr 485 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶 = 𝐵)
34 simpl2 1191 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐵 ∈ ℝ*)
3533, 34eqeltrd 2839 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶 ∈ ℝ*)
36 simpl3 1192 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐴𝐵)
3736, 33breqtrrd 5102 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐴𝐶)
3834xrleidd 12886 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐵𝐵)
3933, 38eqbrtrd 5096 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶𝐵)
40 simpl1 1190 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐴 ∈ ℝ*)
4140, 34, 4syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
4235, 37, 39, 41mpbir3and 1341 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶 ∈ (𝐴[,]𝐵))
4332, 42jaodan 955 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
4443ex 413 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵) → 𝐶 ∈ (𝐴[,]𝐵)))
4529, 44impbid 211 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  (class class class)co 7275  *cxr 11008   < clt 11009  cle 11010  [,)cico 13081  [,]cicc 13082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ico 13085  df-icc 13086
This theorem is referenced by:  xrge0adddir  31301  esumcvg  32054
  Copyright terms: Public domain W3C validator