Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faosnf0.11b Structured version   Visualization version   GIF version

Theorem faosnf0.11b 43451
Description: 𝐵 is called a non-limit ordinal if it is not a limit ordinal. (Contributed by RP, 27-Sep-2023.)

Alling, Norman L. "Fundamentals of Analysis Over Surreal Numbers Fields." The Rocky Mountain Journal of Mathematics 19, no. 3 (1989): 565-73. http://www.jstor.org/stable/44237243.

Assertion
Ref Expression
faosnf0.11b ((Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem faosnf0.11b
StepHypRef Expression
1 3ancomb 1098 . . 3 ((Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅) ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ ¬ Lim 𝐴))
2 df-3an 1088 . . 3 ((Ord 𝐴𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) ↔ ((Ord 𝐴𝐴 ≠ ∅) ∧ ¬ Lim 𝐴))
3 df-ne 2933 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
43anbi2i 623 . . . . . . 7 ((Ord 𝐴𝐴 ≠ ∅) ↔ (Ord 𝐴 ∧ ¬ 𝐴 = ∅))
54imbi1i 349 . . . . . 6 (((Ord 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ ((Ord 𝐴 ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥))
6 pm5.6 1003 . . . . . 6 (((Ord 𝐴 ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (Ord 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
7 iman 401 . . . . . 6 ((Ord 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) ↔ ¬ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
85, 6, 73bitrri 298 . . . . 5 (¬ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) ↔ ((Ord 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥))
9 dflim3 7842 . . . . 5 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
108, 9xchnxbir 333 . . . 4 (¬ Lim 𝐴 ↔ ((Ord 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥))
1110anbi2i 623 . . 3 (((Ord 𝐴𝐴 ≠ ∅) ∧ ¬ Lim 𝐴) ↔ ((Ord 𝐴𝐴 ≠ ∅) ∧ ((Ord 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
121, 2, 113bitri 297 . 2 ((Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅) ↔ ((Ord 𝐴𝐴 ≠ ∅) ∧ ((Ord 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
13 pm3.35 802 . 2 (((Ord 𝐴𝐴 ≠ ∅) ∧ ((Ord 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)
1412, 13sylbi 217 1 ((Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wne 2932  wrex 3060  c0 4308  Ord word 6351  Oncon0 6352  Lim wlim 6353  suc csuc 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator