![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > faosnf0.11b | Structured version Visualization version GIF version |
Description: 𝐵 is called a non-limit
ordinal if it is not a limit ordinal.
(Contributed by RP, 27-Sep-2023.)
Alling, Norman L. "Fundamentals of Analysis Over Surreal Numbers Fields." The Rocky Mountain Journal of Mathematics 19, no. 3 (1989): 565-73. http://www.jstor.org/stable/44237243. |
Ref | Expression |
---|---|
faosnf0.11b | ⊢ ((Ord 𝐴 ∧ ¬ Lim 𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancomb 1098 | . . 3 ⊢ ((Ord 𝐴 ∧ ¬ Lim 𝐴 ∧ 𝐴 ≠ ∅) ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴)) | |
2 | df-3an 1088 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) ↔ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) ∧ ¬ Lim 𝐴)) | |
3 | df-ne 2938 | . . . . . . . 8 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
4 | 3 | anbi2i 623 | . . . . . . 7 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) ↔ (Ord 𝐴 ∧ ¬ 𝐴 = ∅)) |
5 | 4 | imbi1i 349 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ ((Ord 𝐴 ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)) |
6 | pm5.6 1003 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (Ord 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) | |
7 | iman 401 | . . . . . 6 ⊢ ((Ord 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) ↔ ¬ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) | |
8 | 5, 6, 7 | 3bitrri 298 | . . . . 5 ⊢ (¬ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) ↔ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)) |
9 | dflim3 7867 | . . . . 5 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) | |
10 | 8, 9 | xchnxbir 333 | . . . 4 ⊢ (¬ Lim 𝐴 ↔ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)) |
11 | 10 | anbi2i 623 | . . 3 ⊢ (((Ord 𝐴 ∧ 𝐴 ≠ ∅) ∧ ¬ Lim 𝐴) ↔ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) ∧ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
12 | 1, 2, 11 | 3bitri 297 | . 2 ⊢ ((Ord 𝐴 ∧ ¬ Lim 𝐴 ∧ 𝐴 ≠ ∅) ↔ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) ∧ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
13 | pm3.35 803 | . 2 ⊢ (((Ord 𝐴 ∧ 𝐴 ≠ ∅) ∧ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) | |
14 | 12, 13 | sylbi 217 | 1 ⊢ ((Ord 𝐴 ∧ ¬ Lim 𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1536 ≠ wne 2937 ∃wrex 3067 ∅c0 4338 Ord word 6384 Oncon0 6385 Lim wlim 6386 suc csuc 6387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |