![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > faosnf0.11b | Structured version Visualization version GIF version |
Description: 𝐵 is called a non-limit
ordinal if it is not a limit ordinal.
(Contributed by RP, 27-Sep-2023.)
Alling, Norman L. "Fundamentals of Analysis Over Surreal Numbers Fields." The Rocky Mountain Journal of Mathematics 19, no. 3 (1989): 565-73. http://www.jstor.org/stable/44237243. |
Ref | Expression |
---|---|
faosnf0.11b | ⊢ ((Ord 𝐴 ∧ ¬ Lim 𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancomb 1096 | . . 3 ⊢ ((Ord 𝐴 ∧ ¬ Lim 𝐴 ∧ 𝐴 ≠ ∅) ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴)) | |
2 | df-3an 1086 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) ↔ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) ∧ ¬ Lim 𝐴)) | |
3 | df-ne 2931 | . . . . . . . 8 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
4 | 3 | anbi2i 621 | . . . . . . 7 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) ↔ (Ord 𝐴 ∧ ¬ 𝐴 = ∅)) |
5 | 4 | imbi1i 348 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ ((Ord 𝐴 ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)) |
6 | pm5.6 999 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (Ord 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) | |
7 | iman 400 | . . . . . 6 ⊢ ((Ord 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) ↔ ¬ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) | |
8 | 5, 6, 7 | 3bitrri 297 | . . . . 5 ⊢ (¬ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) ↔ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)) |
9 | dflim3 7848 | . . . . 5 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) | |
10 | 8, 9 | xchnxbir 332 | . . . 4 ⊢ (¬ Lim 𝐴 ↔ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)) |
11 | 10 | anbi2i 621 | . . 3 ⊢ (((Ord 𝐴 ∧ 𝐴 ≠ ∅) ∧ ¬ Lim 𝐴) ↔ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) ∧ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
12 | 1, 2, 11 | 3bitri 296 | . 2 ⊢ ((Ord 𝐴 ∧ ¬ Lim 𝐴 ∧ 𝐴 ≠ ∅) ↔ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) ∧ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
13 | pm3.35 801 | . 2 ⊢ (((Ord 𝐴 ∧ 𝐴 ≠ ∅) ∧ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) | |
14 | 12, 13 | sylbi 216 | 1 ⊢ ((Ord 𝐴 ∧ ¬ Lim 𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∨ wo 845 ∧ w3a 1084 = wceq 1533 ≠ wne 2930 ∃wrex 3060 ∅c0 4318 Ord word 6363 Oncon0 6364 Lim wlim 6365 suc csuc 6366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-tr 5261 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |