Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elicoelioo Structured version   Visualization version   GIF version

Theorem elicoelioo 32780
Description: Relate elementhood to a closed-below, open-above interval with elementhood to the same open interval or to its lower bound. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Assertion
Ref Expression
elicoelioo ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵))))

Proof of Theorem elicoelioo
StepHypRef Expression
1 simpl1 1192 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐴 ∈ ℝ*)
2 simpl2 1193 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐵 ∈ ℝ*)
3 simprl 771 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐶 ∈ (𝐴[,)𝐵))
4 elico1 13430 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
54biimpa 476 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵))
65simp1d 1143 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ*)
71, 2, 3, 6syl21anc 838 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐶 ∈ ℝ*)
85simp2d 1144 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴𝐶)
91, 2, 3, 8syl21anc 838 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐴𝐶)
101, 2jca 511 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
11 simprr 773 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → ¬ 𝐶 ∈ (𝐴(,)𝐵))
125simp3d 1145 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 < 𝐵)
1310, 3, 12syl2anc 584 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐶 < 𝐵)
14 elioo1 13427 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵)))
1514notbid 318 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐶 ∈ (𝐴(,)𝐵) ↔ ¬ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵)))
1615biimpa 476 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) → ¬ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵))
17 3anan32 1097 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵) ↔ ((𝐶 ∈ ℝ*𝐶 < 𝐵) ∧ 𝐴 < 𝐶))
1817notbii 320 . . . . . . . . . . 11 (¬ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵) ↔ ¬ ((𝐶 ∈ ℝ*𝐶 < 𝐵) ∧ 𝐴 < 𝐶))
19 imnan 399 . . . . . . . . . . 11 (((𝐶 ∈ ℝ*𝐶 < 𝐵) → ¬ 𝐴 < 𝐶) ↔ ¬ ((𝐶 ∈ ℝ*𝐶 < 𝐵) ∧ 𝐴 < 𝐶))
2018, 19bitr4i 278 . . . . . . . . . 10 (¬ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵) ↔ ((𝐶 ∈ ℝ*𝐶 < 𝐵) → ¬ 𝐴 < 𝐶))
2116, 20sylib 218 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) → ((𝐶 ∈ ℝ*𝐶 < 𝐵) → ¬ 𝐴 < 𝐶))
2221imp 406 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) ∧ (𝐶 ∈ ℝ*𝐶 < 𝐵)) → ¬ 𝐴 < 𝐶)
2310, 11, 7, 13, 22syl22anc 839 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → ¬ 𝐴 < 𝐶)
24 xeqlelt 32778 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 = 𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴 < 𝐶)))
2524biimpar 477 . . . . . . 7 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐶 ∧ ¬ 𝐴 < 𝐶)) → 𝐴 = 𝐶)
261, 7, 9, 23, 25syl22anc 839 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐴 = 𝐶)
2726ex 412 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 = 𝐶))
28 eqcom 2744 . . . . 5 (𝐴 = 𝐶𝐶 = 𝐴)
2927, 28imbitrdi 251 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 = 𝐴))
30 pm5.6 1004 . . . 4 (((𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 = 𝐴) ↔ (𝐶 ∈ (𝐴[,)𝐵) → (𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴)))
3129, 30sylib 218 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐶 ∈ (𝐴[,)𝐵) → (𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴)))
32 orcom 871 . . 3 ((𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴) ↔ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵)))
3331, 32imbitrdi 251 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐶 ∈ (𝐴[,)𝐵) → (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵))))
34 simpr 484 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐶 = 𝐴)
35 simpl1 1192 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐴 ∈ ℝ*)
3634, 35eqeltrd 2841 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐶 ∈ ℝ*)
3735xrleidd 13194 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐴𝐴)
3837, 34breqtrrd 5171 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐴𝐶)
39 simpl3 1194 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐴 < 𝐵)
4034, 39eqbrtrd 5165 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐶 < 𝐵)
41 simpl2 1193 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐵 ∈ ℝ*)
4235, 41, 4syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
4336, 38, 40, 42mpbir3and 1343 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐶 ∈ (𝐴[,)𝐵))
44 ioossico 13478 . . . . 5 (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵)
45 simpr 484 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ (𝐴(,)𝐵))
4644, 45sselid 3981 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ (𝐴[,)𝐵))
4743, 46jaodan 960 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵))) → 𝐶 ∈ (𝐴[,)𝐵))
4847ex 412 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ (𝐴[,)𝐵)))
4933, 48impbid 212 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  (class class class)co 7431  *cxr 11294   < clt 11295  cle 11296  (,)cioo 13387  [,)cico 13389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-ioo 13391  df-ico 13393
This theorem is referenced by:  xrge0mulc1cn  33940
  Copyright terms: Public domain W3C validator