Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elicoelioo Structured version   Visualization version   GIF version

Theorem elicoelioo 30527
Description: Relate elementhood to a closed-below, open-above interval with elementhood to the same open interval or to its lower bound. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Assertion
Ref Expression
elicoelioo ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵))))

Proof of Theorem elicoelioo
StepHypRef Expression
1 simpl1 1188 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐴 ∈ ℝ*)
2 simpl2 1189 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐵 ∈ ℝ*)
3 simprl 770 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐶 ∈ (𝐴[,)𝐵))
4 elico1 12769 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
54biimpa 480 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵))
65simp1d 1139 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ*)
71, 2, 3, 6syl21anc 836 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐶 ∈ ℝ*)
85simp2d 1140 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴𝐶)
91, 2, 3, 8syl21anc 836 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐴𝐶)
101, 2jca 515 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
11 simprr 772 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → ¬ 𝐶 ∈ (𝐴(,)𝐵))
125simp3d 1141 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 < 𝐵)
1310, 3, 12syl2anc 587 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐶 < 𝐵)
14 elioo1 12766 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵)))
1514notbid 321 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐶 ∈ (𝐴(,)𝐵) ↔ ¬ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵)))
1615biimpa 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) → ¬ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵))
17 3anan32 1094 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵) ↔ ((𝐶 ∈ ℝ*𝐶 < 𝐵) ∧ 𝐴 < 𝐶))
1817notbii 323 . . . . . . . . . . 11 (¬ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵) ↔ ¬ ((𝐶 ∈ ℝ*𝐶 < 𝐵) ∧ 𝐴 < 𝐶))
19 imnan 403 . . . . . . . . . . 11 (((𝐶 ∈ ℝ*𝐶 < 𝐵) → ¬ 𝐴 < 𝐶) ↔ ¬ ((𝐶 ∈ ℝ*𝐶 < 𝐵) ∧ 𝐴 < 𝐶))
2018, 19bitr4i 281 . . . . . . . . . 10 (¬ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵) ↔ ((𝐶 ∈ ℝ*𝐶 < 𝐵) → ¬ 𝐴 < 𝐶))
2116, 20sylib 221 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) → ((𝐶 ∈ ℝ*𝐶 < 𝐵) → ¬ 𝐴 < 𝐶))
2221imp 410 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) ∧ (𝐶 ∈ ℝ*𝐶 < 𝐵)) → ¬ 𝐴 < 𝐶)
2310, 11, 7, 13, 22syl22anc 837 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → ¬ 𝐴 < 𝐶)
24 xeqlelt 30525 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 = 𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴 < 𝐶)))
2524biimpar 481 . . . . . . 7 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐶 ∧ ¬ 𝐴 < 𝐶)) → 𝐴 = 𝐶)
261, 7, 9, 23, 25syl22anc 837 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐴 = 𝐶)
2726ex 416 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 = 𝐶))
28 eqcom 2805 . . . . 5 (𝐴 = 𝐶𝐶 = 𝐴)
2927, 28syl6ib 254 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 = 𝐴))
30 pm5.6 999 . . . 4 (((𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 = 𝐴) ↔ (𝐶 ∈ (𝐴[,)𝐵) → (𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴)))
3129, 30sylib 221 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐶 ∈ (𝐴[,)𝐵) → (𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴)))
32 orcom 867 . . 3 ((𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴) ↔ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵)))
3331, 32syl6ib 254 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐶 ∈ (𝐴[,)𝐵) → (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵))))
34 simpr 488 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐶 = 𝐴)
35 simpl1 1188 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐴 ∈ ℝ*)
3634, 35eqeltrd 2890 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐶 ∈ ℝ*)
3735xrleidd 12533 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐴𝐴)
3837, 34breqtrrd 5058 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐴𝐶)
39 simpl3 1190 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐴 < 𝐵)
4034, 39eqbrtrd 5052 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐶 < 𝐵)
41 simpl2 1189 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐵 ∈ ℝ*)
4235, 41, 4syl2anc 587 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
4336, 38, 40, 42mpbir3and 1339 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐶 ∈ (𝐴[,)𝐵))
44 ioossico 12816 . . . . 5 (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵)
45 simpr 488 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ (𝐴(,)𝐵))
4644, 45sseldi 3913 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ (𝐴[,)𝐵))
4743, 46jaodan 955 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵))) → 𝐶 ∈ (𝐴[,)𝐵))
4847ex 416 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ (𝐴[,)𝐵)))
4933, 48impbid 215 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111   class class class wbr 5030  (class class class)co 7135  *cxr 10663   < clt 10664  cle 10665  (,)cioo 12726  [,)cico 12728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-ioo 12730  df-ico 12732
This theorem is referenced by:  xrge0mulc1cn  31294
  Copyright terms: Public domain W3C validator