Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elicoelioo Structured version   Visualization version   GIF version

Theorem elicoelioo 32753
Description: Relate elementhood to a closed-below, open-above interval with elementhood to the same open interval or to its lower bound. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Assertion
Ref Expression
elicoelioo ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵))))

Proof of Theorem elicoelioo
StepHypRef Expression
1 simpl1 1192 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐴 ∈ ℝ*)
2 simpl2 1193 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐵 ∈ ℝ*)
3 simprl 770 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐶 ∈ (𝐴[,)𝐵))
4 elico1 13283 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
54biimpa 476 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵))
65simp1d 1142 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ*)
71, 2, 3, 6syl21anc 837 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐶 ∈ ℝ*)
85simp2d 1143 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴𝐶)
91, 2, 3, 8syl21anc 837 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐴𝐶)
101, 2jca 511 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
11 simprr 772 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → ¬ 𝐶 ∈ (𝐴(,)𝐵))
125simp3d 1144 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 < 𝐵)
1310, 3, 12syl2anc 584 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐶 < 𝐵)
14 elioo1 13280 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵)))
1514notbid 318 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐶 ∈ (𝐴(,)𝐵) ↔ ¬ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵)))
1615biimpa 476 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) → ¬ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵))
17 3anan32 1096 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵) ↔ ((𝐶 ∈ ℝ*𝐶 < 𝐵) ∧ 𝐴 < 𝐶))
1817notbii 320 . . . . . . . . . . 11 (¬ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵) ↔ ¬ ((𝐶 ∈ ℝ*𝐶 < 𝐵) ∧ 𝐴 < 𝐶))
19 imnan 399 . . . . . . . . . . 11 (((𝐶 ∈ ℝ*𝐶 < 𝐵) → ¬ 𝐴 < 𝐶) ↔ ¬ ((𝐶 ∈ ℝ*𝐶 < 𝐵) ∧ 𝐴 < 𝐶))
2018, 19bitr4i 278 . . . . . . . . . 10 (¬ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵) ↔ ((𝐶 ∈ ℝ*𝐶 < 𝐵) → ¬ 𝐴 < 𝐶))
2116, 20sylib 218 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) → ((𝐶 ∈ ℝ*𝐶 < 𝐵) → ¬ 𝐴 < 𝐶))
2221imp 406 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) ∧ (𝐶 ∈ ℝ*𝐶 < 𝐵)) → ¬ 𝐴 < 𝐶)
2310, 11, 7, 13, 22syl22anc 838 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → ¬ 𝐴 < 𝐶)
24 xeqlelt 32751 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 = 𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴 < 𝐶)))
2524biimpar 477 . . . . . . 7 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐶 ∧ ¬ 𝐴 < 𝐶)) → 𝐴 = 𝐶)
261, 7, 9, 23, 25syl22anc 838 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐴 = 𝐶)
2726ex 412 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 = 𝐶))
28 eqcom 2738 . . . . 5 (𝐴 = 𝐶𝐶 = 𝐴)
2927, 28imbitrdi 251 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 = 𝐴))
30 pm5.6 1003 . . . 4 (((𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 = 𝐴) ↔ (𝐶 ∈ (𝐴[,)𝐵) → (𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴)))
3129, 30sylib 218 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐶 ∈ (𝐴[,)𝐵) → (𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴)))
32 orcom 870 . . 3 ((𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴) ↔ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵)))
3331, 32imbitrdi 251 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐶 ∈ (𝐴[,)𝐵) → (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵))))
34 simpr 484 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐶 = 𝐴)
35 simpl1 1192 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐴 ∈ ℝ*)
3634, 35eqeltrd 2831 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐶 ∈ ℝ*)
3735xrleidd 13046 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐴𝐴)
3837, 34breqtrrd 5114 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐴𝐶)
39 simpl3 1194 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐴 < 𝐵)
4034, 39eqbrtrd 5108 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐶 < 𝐵)
41 simpl2 1193 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐵 ∈ ℝ*)
4235, 41, 4syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
4336, 38, 40, 42mpbir3and 1343 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐶 ∈ (𝐴[,)𝐵))
44 ioossico 13333 . . . . 5 (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵)
45 simpr 484 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ (𝐴(,)𝐵))
4644, 45sselid 3927 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ (𝐴[,)𝐵))
4743, 46jaodan 959 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵))) → 𝐶 ∈ (𝐴[,)𝐵))
4847ex 412 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ (𝐴[,)𝐵)))
4933, 48impbid 212 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5086  (class class class)co 7341  *cxr 11140   < clt 11141  cle 11142  (,)cioo 13240  [,)cico 13242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-pre-lttri 11075  ax-pre-lttrn 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-ioo 13244  df-ico 13246
This theorem is referenced by:  xrge0mulc1cn  33946
  Copyright terms: Public domain W3C validator