![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssundif | Structured version Visualization version GIF version |
Description: A condition equivalent to inclusion in the union of two classes. (Contributed by NM, 26-Mar-2007.) |
Ref | Expression |
---|---|
ssundif | ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.6 1003 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) | |
2 | eldif 3972 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 2 | imbi1i 349 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∖ 𝐵) → 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶)) |
4 | elun 4162 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
5 | 4 | imbi2i 336 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∪ 𝐶)) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
6 | 1, 3, 5 | 3bitr4ri 304 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∪ 𝐶)) ↔ (𝑥 ∈ (𝐴 ∖ 𝐵) → 𝑥 ∈ 𝐶)) |
7 | 6 | albii 1815 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∪ 𝐶)) ↔ ∀𝑥(𝑥 ∈ (𝐴 ∖ 𝐵) → 𝑥 ∈ 𝐶)) |
8 | df-ss 3979 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∪ 𝐶))) | |
9 | df-ss 3979 | . 2 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∖ 𝐵) → 𝑥 ∈ 𝐶)) | |
10 | 7, 8, 9 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1534 ∈ wcel 2105 ∖ cdif 3959 ∪ cun 3960 ⊆ wss 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 |
This theorem is referenced by: difcom 4494 uneqdifeq 4498 ssunsn2 4831 elpwun 7787 soex 7943 ressuppssdif 8208 ssfi 9211 frfi 9318 cantnfp1lem3 9717 dfacfin7 10436 zornn0g 10542 fpwwe2lem12 10679 hashbclem 14487 incexclem 15868 ramub1lem1 17059 lpcls 23387 cmpcld 23425 alexsubALTlem3 24072 restmetu 24598 uniiccdif 25626 abelthlem2 26490 abelthlem3 26491 pmtrcnelor 33093 imadifss 37581 frege124d 43750 |
Copyright terms: Public domain | W3C validator |