| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssundif | Structured version Visualization version GIF version | ||
| Description: A condition equivalent to inclusion in the union of two classes. (Contributed by NM, 26-Mar-2007.) |
| Ref | Expression |
|---|---|
| ssundif | ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐵) ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.6 1003 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) | |
| 2 | eldif 3927 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 3 | 2 | imbi1i 349 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∖ 𝐵) → 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶)) |
| 4 | elun 4119 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
| 5 | 4 | imbi2i 336 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∪ 𝐶)) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
| 6 | 1, 3, 5 | 3bitr4ri 304 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∪ 𝐶)) ↔ (𝑥 ∈ (𝐴 ∖ 𝐵) → 𝑥 ∈ 𝐶)) |
| 7 | 6 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∪ 𝐶)) ↔ ∀𝑥(𝑥 ∈ (𝐴 ∖ 𝐵) → 𝑥 ∈ 𝐶)) |
| 8 | df-ss 3934 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∪ 𝐶))) | |
| 9 | df-ss 3934 | . 2 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∖ 𝐵) → 𝑥 ∈ 𝐶)) | |
| 10 | 7, 8, 9 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐵) ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1538 ∈ wcel 2109 ∖ cdif 3914 ∪ cun 3915 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 |
| This theorem is referenced by: difcom 4455 uneqdifeq 4459 ssunsn2 4794 f1imadifssran 6605 elpwun 7748 soex 7900 ressuppssdif 8167 ssfi 9143 frfi 9239 cantnfp1lem3 9640 dfacfin7 10359 zornn0g 10465 fpwwe2lem12 10602 hashbclem 14424 incexclem 15809 ramub1lem1 17004 lpcls 23258 cmpcld 23296 alexsubALTlem3 23943 restmetu 24465 uniiccdif 25486 abelthlem2 26349 abelthlem3 26350 pmtrcnelor 33055 imadifss 37596 frege124d 43757 |
| Copyright terms: Public domain | W3C validator |