MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssundif Structured version   Visualization version   GIF version

Theorem ssundif 4437
Description: A condition equivalent to inclusion in the union of two classes. (Contributed by NM, 26-Mar-2007.)
Assertion
Ref Expression
ssundif (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)

Proof of Theorem ssundif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm5.6 1003 . . . 4 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥𝐶) ↔ (𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
2 eldif 3908 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
32imbi1i 349 . . . 4 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥𝐶))
4 elun 4102 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
54imbi2i 336 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
61, 3, 53bitr4ri 304 . . 3 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
76albii 1820 . 2 (∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
8 df-ss 3915 . 2 (𝐴 ⊆ (𝐵𝐶) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)))
9 df-ss 3915 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
107, 8, 93bitr4i 303 1 (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1539  wcel 2113  cdif 3895  cun 3896  wss 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915
This theorem is referenced by:  difcom  4438  uneqdifeq  4442  ssunsn2  4780  f1imadifssran  6574  elpwun  7710  soex  7859  ressuppssdif  8123  ssfi  9091  frfi  9178  cantnfp1lem3  9579  dfacfin7  10299  zornn0g  10405  fpwwe2lem12  10542  hashbclem  14363  incexclem  15747  ramub1lem1  16942  lpcls  23282  cmpcld  23320  alexsubALTlem3  23967  restmetu  24488  uniiccdif  25509  abelthlem2  26372  abelthlem3  26373  pmtrcnelor  33069  imadifss  37658  frege124d  43881
  Copyright terms: Public domain W3C validator