MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssundif Structured version   Visualization version   GIF version

Theorem ssundif 4493
Description: A condition equivalent to inclusion in the union of two classes. (Contributed by NM, 26-Mar-2007.)
Assertion
Ref Expression
ssundif (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)

Proof of Theorem ssundif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm5.6 1003 . . . 4 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥𝐶) ↔ (𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
2 eldif 3972 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
32imbi1i 349 . . . 4 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥𝐶))
4 elun 4162 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
54imbi2i 336 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
61, 3, 53bitr4ri 304 . . 3 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
76albii 1815 . 2 (∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
8 df-ss 3979 . 2 (𝐴 ⊆ (𝐵𝐶) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)))
9 df-ss 3979 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
107, 8, 93bitr4i 303 1 (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1534  wcel 2105  cdif 3959  cun 3960  wss 3962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1539  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979
This theorem is referenced by:  difcom  4494  uneqdifeq  4498  ssunsn2  4831  elpwun  7787  soex  7943  ressuppssdif  8208  ssfi  9211  frfi  9318  cantnfp1lem3  9717  dfacfin7  10436  zornn0g  10542  fpwwe2lem12  10679  hashbclem  14487  incexclem  15868  ramub1lem1  17059  lpcls  23387  cmpcld  23425  alexsubALTlem3  24072  restmetu  24598  uniiccdif  25626  abelthlem2  26490  abelthlem3  26491  pmtrcnelor  33093  imadifss  37581  frege124d  43750
  Copyright terms: Public domain W3C validator