MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssundif Structured version   Visualization version   GIF version

Theorem ssundif 4438
Description: A condition equivalent to inclusion in the union of two classes. (Contributed by NM, 26-Mar-2007.)
Assertion
Ref Expression
ssundif (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)

Proof of Theorem ssundif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm5.6 1003 . . . 4 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥𝐶) ↔ (𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
2 eldif 3912 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
32imbi1i 349 . . . 4 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥𝐶))
4 elun 4103 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
54imbi2i 336 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
61, 3, 53bitr4ri 304 . . 3 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
76albii 1820 . 2 (∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
8 df-ss 3919 . 2 (𝐴 ⊆ (𝐵𝐶) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)))
9 df-ss 3919 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
107, 8, 93bitr4i 303 1 (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1539  wcel 2111  cdif 3899  cun 3900  wss 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919
This theorem is referenced by:  difcom  4439  uneqdifeq  4443  ssunsn2  4779  f1imadifssran  6567  elpwun  7702  soex  7851  ressuppssdif  8115  ssfi  9082  frfi  9169  cantnfp1lem3  9570  dfacfin7  10290  zornn0g  10396  fpwwe2lem12  10533  hashbclem  14359  incexclem  15743  ramub1lem1  16938  lpcls  23280  cmpcld  23318  alexsubALTlem3  23965  restmetu  24486  uniiccdif  25507  abelthlem2  26370  abelthlem3  26371  pmtrcnelor  33058  imadifss  37641  frege124d  43800
  Copyright terms: Public domain W3C validator