Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfsucon Structured version   Visualization version   GIF version

Theorem dfsucon 43512
Description: 𝐴 is called a successor ordinal if it is not a limit ordinal and not the empty set. (Contributed by RP, 11-Nov-2023.)
Assertion
Ref Expression
dfsucon ((Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅) ↔ ∃𝑥 ∈ On 𝐴 = suc 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem dfsucon
StepHypRef Expression
1 3ancomb 1098 . . . 4 ((Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅) ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ ¬ Lim 𝐴))
2 df-3an 1088 . . . 4 ((Ord 𝐴𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) ↔ ((Ord 𝐴𝐴 ≠ ∅) ∧ ¬ Lim 𝐴))
3 df-ne 2938 . . . . . . . . 9 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
43anbi2i 623 . . . . . . . 8 ((Ord 𝐴𝐴 ≠ ∅) ↔ (Ord 𝐴 ∧ ¬ 𝐴 = ∅))
54imbi1i 349 . . . . . . 7 (((Ord 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ ((Ord 𝐴 ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥))
6 pm5.6 1003 . . . . . . 7 (((Ord 𝐴 ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (Ord 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
7 iman 401 . . . . . . 7 ((Ord 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) ↔ ¬ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
85, 6, 73bitrri 298 . . . . . 6 (¬ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) ↔ ((Ord 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥))
9 dflim3 7867 . . . . . 6 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
108, 9xchnxbir 333 . . . . 5 (¬ Lim 𝐴 ↔ ((Ord 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥))
1110anbi2i 623 . . . 4 (((Ord 𝐴𝐴 ≠ ∅) ∧ ¬ Lim 𝐴) ↔ ((Ord 𝐴𝐴 ≠ ∅) ∧ ((Ord 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
121, 2, 113bitri 297 . . 3 ((Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅) ↔ ((Ord 𝐴𝐴 ≠ ∅) ∧ ((Ord 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
13 pm3.35 803 . . 3 (((Ord 𝐴𝐴 ≠ ∅) ∧ ((Ord 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)
1412, 13sylbi 217 . 2 ((Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)
15 eloni 6395 . . . . . 6 (𝑥 ∈ On → Ord 𝑥)
16 ordsuc 7832 . . . . . 6 (Ord 𝑥 ↔ Ord suc 𝑥)
1715, 16sylib 218 . . . . 5 (𝑥 ∈ On → Ord suc 𝑥)
18 nlimsuc 43430 . . . . 5 (𝑥 ∈ On → ¬ Lim suc 𝑥)
19 nsuceq0 6468 . . . . . 6 suc 𝑥 ≠ ∅
2019a1i 11 . . . . 5 (𝑥 ∈ On → suc 𝑥 ≠ ∅)
2117, 18, 203jca 1127 . . . 4 (𝑥 ∈ On → (Ord suc 𝑥 ∧ ¬ Lim suc 𝑥 ∧ suc 𝑥 ≠ ∅))
22 ordeq 6392 . . . . 5 (𝐴 = suc 𝑥 → (Ord 𝐴 ↔ Ord suc 𝑥))
23 limeq 6397 . . . . . 6 (𝐴 = suc 𝑥 → (Lim 𝐴 ↔ Lim suc 𝑥))
2423notbid 318 . . . . 5 (𝐴 = suc 𝑥 → (¬ Lim 𝐴 ↔ ¬ Lim suc 𝑥))
25 neeq1 3000 . . . . 5 (𝐴 = suc 𝑥 → (𝐴 ≠ ∅ ↔ suc 𝑥 ≠ ∅))
2622, 24, 253anbi123d 1435 . . . 4 (𝐴 = suc 𝑥 → ((Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅) ↔ (Ord suc 𝑥 ∧ ¬ Lim suc 𝑥 ∧ suc 𝑥 ≠ ∅)))
2721, 26syl5ibrcom 247 . . 3 (𝑥 ∈ On → (𝐴 = suc 𝑥 → (Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅)))
2827rexlimiv 3145 . 2 (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅))
2914, 28impbii 209 1 ((Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅) ↔ ∃𝑥 ∈ On 𝐴 = suc 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wrex 3067  c0 4338  Ord word 6384  Oncon0 6385  Lim wlim 6386  suc csuc 6387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator