| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sselpwd | Structured version Visualization version GIF version | ||
| Description: Elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
| Ref | Expression |
|---|---|
| sselpwd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| sselpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| sselpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sselpwd.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 2 | sselpwd.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | ssexd 5282 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
| 4 | 3, 2 | elpwd 4572 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: knatar 7335 marypha1 9392 fin1a2lem7 10366 canthp1lem2 10613 wunss 10672 ramub1lem1 17004 mreexd 17610 mreexexlemd 17612 mreexexlem4d 17615 opsrval 21960 selvfval 22028 cncls 23168 fbasrn 23778 rnelfmlem 23846 ustssel 24100 pwrssmgc 32933 exsslsb 33599 crefi 33844 ldsysgenld 34157 ldgenpisyslem1 34160 bj-ismoored 37102 bj-imdirval2 37178 bj-iminvval2 37189 sticksstones2 42142 rfovcnvf1od 44000 fsovrfovd 44005 fsovfd 44008 fsovcnvlem 44009 ntrclsrcomplex 44031 clsk3nimkb 44036 clsk1indlem4 44040 clsk1indlem1 44041 ntrclsiso 44063 ntrclskb 44065 ntrclsk3 44066 ntrclsk13 44067 ntrneircomplex 44070 ntrneik3 44092 ntrneix3 44093 ntrneik13 44094 ntrneix13 44095 clsneircomplex 44099 clsneiel1 44104 neicvgrcomplex 44109 neicvgel1 44115 mnussd 44259 mnuprssd 44265 mnuop3d 44267 wessf1ornlem 45186 dvnprodlem1 45951 ovolsplit 45993 saliunclf 46327 sge0f1o 46387 isisubgr 47866 iscnrm3rlem3 48934 |
| Copyright terms: Public domain | W3C validator |