| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sselpwd | Structured version Visualization version GIF version | ||
| Description: Elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
| Ref | Expression |
|---|---|
| sselpwd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| sselpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| sselpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sselpwd.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 2 | sselpwd.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | ssexd 5260 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
| 4 | 3, 2 | elpwd 4553 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 df-pw 4549 |
| This theorem is referenced by: knatar 7291 marypha1 9318 fin1a2lem7 10297 canthp1lem2 10544 wunss 10603 ramub1lem1 16938 mreexd 17548 mreexexlemd 17550 mreexexlem4d 17553 opsrval 21981 selvfval 22049 cncls 23189 fbasrn 23799 rnelfmlem 23867 ustssel 24121 hashimaf1 32793 pwrssmgc 32981 esplyfv1 33590 exsslsb 33609 crefi 33860 ldsysgenld 34173 ldgenpisyslem1 34176 bj-ismoored 37151 bj-imdirval2 37227 bj-iminvval2 37238 sticksstones2 42239 rfovcnvf1od 44096 fsovrfovd 44101 fsovfd 44104 fsovcnvlem 44105 ntrclsrcomplex 44127 clsk3nimkb 44132 clsk1indlem4 44136 clsk1indlem1 44137 ntrclsiso 44159 ntrclskb 44161 ntrclsk3 44162 ntrclsk13 44163 ntrneircomplex 44166 ntrneik3 44188 ntrneix3 44189 ntrneik13 44190 ntrneix13 44191 clsneircomplex 44195 clsneiel1 44200 neicvgrcomplex 44205 neicvgel1 44211 mnussd 44355 mnuprssd 44361 mnuop3d 44363 wessf1ornlem 45281 dvnprodlem1 46043 ovolsplit 46085 saliunclf 46419 sge0f1o 46479 isisubgr 47961 iscnrm3rlem3 49041 |
| Copyright terms: Public domain | W3C validator |