MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sselpwd Structured version   Visualization version   GIF version

Theorem sselpwd 5264
Description: Elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.)
Hypotheses
Ref Expression
sselpwd.1 (𝜑𝐵𝑉)
sselpwd.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
sselpwd (𝜑𝐴 ∈ 𝒫 𝐵)

Proof of Theorem sselpwd
StepHypRef Expression
1 sselpwd.1 . . 3 (𝜑𝐵𝑉)
2 sselpwd.2 . . 3 (𝜑𝐴𝐵)
31, 2ssexd 5260 . 2 (𝜑𝐴 ∈ V)
43, 2elpwd 4553 1 (𝜑𝐴 ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  wss 3897  𝒫 cpw 4547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-in 3904  df-ss 3914  df-pw 4549
This theorem is referenced by:  knatar  7291  marypha1  9318  fin1a2lem7  10297  canthp1lem2  10544  wunss  10603  ramub1lem1  16938  mreexd  17548  mreexexlemd  17550  mreexexlem4d  17553  opsrval  21981  selvfval  22049  cncls  23189  fbasrn  23799  rnelfmlem  23867  ustssel  24121  hashimaf1  32793  pwrssmgc  32981  esplyfv1  33590  exsslsb  33609  crefi  33860  ldsysgenld  34173  ldgenpisyslem1  34176  bj-ismoored  37151  bj-imdirval2  37227  bj-iminvval2  37238  sticksstones2  42239  rfovcnvf1od  44096  fsovrfovd  44101  fsovfd  44104  fsovcnvlem  44105  ntrclsrcomplex  44127  clsk3nimkb  44132  clsk1indlem4  44136  clsk1indlem1  44137  ntrclsiso  44159  ntrclskb  44161  ntrclsk3  44162  ntrclsk13  44163  ntrneircomplex  44166  ntrneik3  44188  ntrneix3  44189  ntrneik13  44190  ntrneix13  44191  clsneircomplex  44195  clsneiel1  44200  neicvgrcomplex  44205  neicvgel1  44211  mnussd  44355  mnuprssd  44361  mnuop3d  44363  wessf1ornlem  45281  dvnprodlem1  46043  ovolsplit  46085  saliunclf  46419  sge0f1o  46479  isisubgr  47961  iscnrm3rlem3  49041
  Copyright terms: Public domain W3C validator