| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sselpwd | Structured version Visualization version GIF version | ||
| Description: Elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
| Ref | Expression |
|---|---|
| sselpwd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| sselpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| sselpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sselpwd.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 2 | sselpwd.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | ssexd 5274 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
| 4 | 3, 2 | elpwd 4565 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 𝒫 cpw 4559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-in 3918 df-ss 3928 df-pw 4561 |
| This theorem is referenced by: knatar 7314 marypha1 9361 fin1a2lem7 10335 canthp1lem2 10582 wunss 10641 ramub1lem1 16973 mreexd 17583 mreexexlemd 17585 mreexexlem4d 17588 opsrval 21986 selvfval 22054 cncls 23194 fbasrn 23804 rnelfmlem 23872 ustssel 24126 pwrssmgc 32972 exsslsb 33585 crefi 33830 ldsysgenld 34143 ldgenpisyslem1 34146 bj-ismoored 37088 bj-imdirval2 37164 bj-iminvval2 37175 sticksstones2 42128 rfovcnvf1od 43986 fsovrfovd 43991 fsovfd 43994 fsovcnvlem 43995 ntrclsrcomplex 44017 clsk3nimkb 44022 clsk1indlem4 44026 clsk1indlem1 44027 ntrclsiso 44049 ntrclskb 44051 ntrclsk3 44052 ntrclsk13 44053 ntrneircomplex 44056 ntrneik3 44078 ntrneix3 44079 ntrneik13 44080 ntrneix13 44081 clsneircomplex 44085 clsneiel1 44090 neicvgrcomplex 44095 neicvgel1 44101 mnussd 44245 mnuprssd 44251 mnuop3d 44253 wessf1ornlem 45172 dvnprodlem1 45937 ovolsplit 45979 saliunclf 46313 sge0f1o 46373 isisubgr 47855 iscnrm3rlem3 48923 |
| Copyright terms: Public domain | W3C validator |