![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sselpwd | Structured version Visualization version GIF version |
Description: Elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
Ref | Expression |
---|---|
sselpwd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
sselpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
sselpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sselpwd.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
2 | sselpwd.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | ssexd 5342 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
4 | 3, 2 | elpwd 4628 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-pw 4624 |
This theorem is referenced by: knatar 7393 marypha1 9503 fin1a2lem7 10475 canthp1lem2 10722 wunss 10781 ramub1lem1 17073 mreexd 17700 mreexexlemd 17702 mreexexlem4d 17705 opsrval 22087 selvfval 22161 cncls 23303 fbasrn 23913 rnelfmlem 23981 ustssel 24235 pwrssmgc 32973 crefi 33793 ldsysgenld 34124 ldgenpisyslem1 34127 bj-ismoored 37073 bj-imdirval2 37149 bj-iminvval2 37160 sticksstones2 42104 rfovcnvf1od 43966 fsovrfovd 43971 fsovfd 43974 fsovcnvlem 43975 ntrclsrcomplex 43997 clsk3nimkb 44002 clsk1indlem4 44006 clsk1indlem1 44007 ntrclsiso 44029 ntrclskb 44031 ntrclsk3 44032 ntrclsk13 44033 ntrneircomplex 44036 ntrneik3 44058 ntrneix3 44059 ntrneik13 44060 ntrneix13 44061 clsneircomplex 44065 clsneiel1 44070 neicvgrcomplex 44075 neicvgel1 44081 mnussd 44232 mnuprssd 44238 mnuop3d 44240 wessf1ornlem 45092 ovolsplit 45909 saliunclf 46243 isisubgr 47734 iscnrm3rlem3 48622 |
Copyright terms: Public domain | W3C validator |