| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sselpwd | Structured version Visualization version GIF version | ||
| Description: Elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
| Ref | Expression |
|---|---|
| sselpwd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| sselpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| sselpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sselpwd.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 2 | sselpwd.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | ssexd 5263 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
| 4 | 3, 2 | elpwd 4557 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 𝒫 cpw 4551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-in 3910 df-ss 3920 df-pw 4553 |
| This theorem is referenced by: knatar 7294 marypha1 9324 fin1a2lem7 10300 canthp1lem2 10547 wunss 10606 ramub1lem1 16938 mreexd 17548 mreexexlemd 17550 mreexexlem4d 17553 opsrval 21951 selvfval 22019 cncls 23159 fbasrn 23769 rnelfmlem 23837 ustssel 24091 pwrssmgc 32943 exsslsb 33569 crefi 33820 ldsysgenld 34133 ldgenpisyslem1 34136 bj-ismoored 37091 bj-imdirval2 37167 bj-iminvval2 37178 sticksstones2 42130 rfovcnvf1od 43987 fsovrfovd 43992 fsovfd 43995 fsovcnvlem 43996 ntrclsrcomplex 44018 clsk3nimkb 44023 clsk1indlem4 44027 clsk1indlem1 44028 ntrclsiso 44050 ntrclskb 44052 ntrclsk3 44053 ntrclsk13 44054 ntrneircomplex 44057 ntrneik3 44079 ntrneix3 44080 ntrneik13 44081 ntrneix13 44082 clsneircomplex 44086 clsneiel1 44091 neicvgrcomplex 44096 neicvgel1 44102 mnussd 44246 mnuprssd 44252 mnuop3d 44254 wessf1ornlem 45173 dvnprodlem1 45937 ovolsplit 45979 saliunclf 46313 sge0f1o 46373 isisubgr 47856 iscnrm3rlem3 48936 |
| Copyright terms: Public domain | W3C validator |