| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sselpwd | Structured version Visualization version GIF version | ||
| Description: Elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
| Ref | Expression |
|---|---|
| sselpwd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| sselpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| sselpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sselpwd.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 2 | sselpwd.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | ssexd 5294 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
| 4 | 3, 2 | elpwd 4581 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 𝒫 cpw 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-in 3933 df-ss 3943 df-pw 4577 |
| This theorem is referenced by: knatar 7350 marypha1 9446 fin1a2lem7 10420 canthp1lem2 10667 wunss 10726 ramub1lem1 17046 mreexd 17654 mreexexlemd 17656 mreexexlem4d 17659 opsrval 22004 selvfval 22072 cncls 23212 fbasrn 23822 rnelfmlem 23890 ustssel 24144 pwrssmgc 32980 exsslsb 33636 crefi 33878 ldsysgenld 34191 ldgenpisyslem1 34194 bj-ismoored 37125 bj-imdirval2 37201 bj-iminvval2 37212 sticksstones2 42160 rfovcnvf1od 44028 fsovrfovd 44033 fsovfd 44036 fsovcnvlem 44037 ntrclsrcomplex 44059 clsk3nimkb 44064 clsk1indlem4 44068 clsk1indlem1 44069 ntrclsiso 44091 ntrclskb 44093 ntrclsk3 44094 ntrclsk13 44095 ntrneircomplex 44098 ntrneik3 44120 ntrneix3 44121 ntrneik13 44122 ntrneix13 44123 clsneircomplex 44127 clsneiel1 44132 neicvgrcomplex 44137 neicvgel1 44143 mnussd 44287 mnuprssd 44293 mnuop3d 44295 wessf1ornlem 45209 dvnprodlem1 45975 ovolsplit 46017 saliunclf 46351 sge0f1o 46411 isisubgr 47875 iscnrm3rlem3 48916 |
| Copyright terms: Public domain | W3C validator |