![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sselpwd | Structured version Visualization version GIF version |
Description: Elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
Ref | Expression |
---|---|
sselpwd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
sselpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
sselpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sselpwd.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
2 | sselpwd.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | ssexd 5329 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
4 | 3, 2 | elpwd 4610 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3477 ⊆ wss 3962 𝒫 cpw 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-in 3969 df-ss 3979 df-pw 4606 |
This theorem is referenced by: knatar 7376 marypha1 9471 fin1a2lem7 10443 canthp1lem2 10690 wunss 10749 ramub1lem1 17059 mreexd 17686 mreexexlemd 17688 mreexexlem4d 17691 opsrval 22081 selvfval 22155 cncls 23297 fbasrn 23907 rnelfmlem 23975 ustssel 24229 pwrssmgc 32974 crefi 33807 ldsysgenld 34140 ldgenpisyslem1 34143 bj-ismoored 37089 bj-imdirval2 37165 bj-iminvval2 37176 sticksstones2 42128 rfovcnvf1od 43993 fsovrfovd 43998 fsovfd 44001 fsovcnvlem 44002 ntrclsrcomplex 44024 clsk3nimkb 44029 clsk1indlem4 44033 clsk1indlem1 44034 ntrclsiso 44056 ntrclskb 44058 ntrclsk3 44059 ntrclsk13 44060 ntrneircomplex 44063 ntrneik3 44085 ntrneix3 44086 ntrneik13 44087 ntrneix13 44088 clsneircomplex 44092 clsneiel1 44097 neicvgrcomplex 44102 neicvgel1 44108 mnussd 44258 mnuprssd 44264 mnuop3d 44266 wessf1ornlem 45127 dvnprodlem1 45901 ovolsplit 45943 saliunclf 46277 sge0f1o 46337 isisubgr 47785 iscnrm3rlem3 48738 |
Copyright terms: Public domain | W3C validator |