Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sselpwd | Structured version Visualization version GIF version |
Description: Elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
Ref | Expression |
---|---|
sselpwd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
sselpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
sselpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sselpwd.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
2 | sselpwd.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | ssexd 5249 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
4 | 3, 2 | elpwd 4542 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3433 ⊆ wss 3888 𝒫 cpw 4534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 ax-sep 5224 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-in 3895 df-ss 3905 df-pw 4536 |
This theorem is referenced by: knatar 7237 marypha1 9202 fin1a2lem7 10171 canthp1lem2 10418 wunss 10477 ramub1lem1 16736 mreexd 17360 mreexexlemd 17362 mreexexlem4d 17365 opsrval 21256 selvfval 21336 cncls 22434 fbasrn 23044 rnelfmlem 23112 ustssel 23366 pwrssmgc 31287 crefi 31806 ldsysgenld 32137 ldgenpisyslem1 32140 bj-ismoored 35287 bj-imdirval2 35363 bj-iminvval2 35374 sticksstones2 40110 rfovcnvf1od 41619 fsovrfovd 41624 fsovfd 41627 fsovcnvlem 41628 ntrclsrcomplex 41652 clsk3nimkb 41657 clsk1indlem4 41661 clsk1indlem1 41662 ntrclsiso 41684 ntrclskb 41686 ntrclsk3 41687 ntrclsk13 41688 ntrneircomplex 41691 ntrneik3 41713 ntrneix3 41714 ntrneik13 41715 ntrneix13 41716 clsneircomplex 41720 clsneiel1 41725 neicvgrcomplex 41730 neicvgel1 41736 mnussd 41888 mnuprssd 41894 mnuop3d 41896 wessf1ornlem 42729 ovolsplit 43536 iscnrm3rlem3 46247 |
Copyright terms: Public domain | W3C validator |