| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sselpwd | Structured version Visualization version GIF version | ||
| Description: Elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
| Ref | Expression |
|---|---|
| sselpwd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| sselpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| sselpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sselpwd.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 2 | sselpwd.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | ssexd 5279 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
| 4 | 3, 2 | elpwd 4569 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: knatar 7332 marypha1 9385 fin1a2lem7 10359 canthp1lem2 10606 wunss 10665 ramub1lem1 16997 mreexd 17603 mreexexlemd 17605 mreexexlem4d 17608 opsrval 21953 selvfval 22021 cncls 23161 fbasrn 23771 rnelfmlem 23839 ustssel 24093 pwrssmgc 32926 exsslsb 33592 crefi 33837 ldsysgenld 34150 ldgenpisyslem1 34153 bj-ismoored 37095 bj-imdirval2 37171 bj-iminvval2 37182 sticksstones2 42135 rfovcnvf1od 43993 fsovrfovd 43998 fsovfd 44001 fsovcnvlem 44002 ntrclsrcomplex 44024 clsk3nimkb 44029 clsk1indlem4 44033 clsk1indlem1 44034 ntrclsiso 44056 ntrclskb 44058 ntrclsk3 44059 ntrclsk13 44060 ntrneircomplex 44063 ntrneik3 44085 ntrneix3 44086 ntrneik13 44087 ntrneix13 44088 clsneircomplex 44092 clsneiel1 44097 neicvgrcomplex 44102 neicvgel1 44108 mnussd 44252 mnuprssd 44258 mnuop3d 44260 wessf1ornlem 45179 dvnprodlem1 45944 ovolsplit 45986 saliunclf 46320 sge0f1o 46380 isisubgr 47862 iscnrm3rlem3 48930 |
| Copyright terms: Public domain | W3C validator |