![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sselpwd | Structured version Visualization version GIF version |
Description: Elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
Ref | Expression |
---|---|
sselpwd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
sselpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
sselpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sselpwd.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
2 | sselpwd.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | ssexd 5329 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
4 | 3, 2 | elpwd 4613 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 Vcvv 3462 ⊆ wss 3947 𝒫 cpw 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5304 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-in 3954 df-ss 3964 df-pw 4609 |
This theorem is referenced by: knatar 7369 marypha1 9477 fin1a2lem7 10449 canthp1lem2 10696 wunss 10755 ramub1lem1 17028 mreexd 17655 mreexexlemd 17657 mreexexlem4d 17660 opsrval 22053 selvfval 22129 cncls 23269 fbasrn 23879 rnelfmlem 23947 ustssel 24201 pwrssmgc 32870 crefi 33662 ldsysgenld 33993 ldgenpisyslem1 33996 bj-ismoored 36814 bj-imdirval2 36890 bj-iminvval2 36901 sticksstones2 41845 rfovcnvf1od 43671 fsovrfovd 43676 fsovfd 43679 fsovcnvlem 43680 ntrclsrcomplex 43702 clsk3nimkb 43707 clsk1indlem4 43711 clsk1indlem1 43712 ntrclsiso 43734 ntrclskb 43736 ntrclsk3 43737 ntrclsk13 43738 ntrneircomplex 43741 ntrneik3 43763 ntrneix3 43764 ntrneik13 43765 ntrneix13 43766 clsneircomplex 43770 clsneiel1 43775 neicvgrcomplex 43780 neicvgel1 43786 mnussd 43937 mnuprssd 43943 mnuop3d 43945 wessf1ornlem 44792 ovolsplit 45609 saliunclf 45943 isisubgr 47429 iscnrm3rlem3 48276 |
Copyright terms: Public domain | W3C validator |