Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sselpwd | Structured version Visualization version GIF version |
Description: Elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
Ref | Expression |
---|---|
sselpwd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
sselpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
sselpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sselpwd.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
2 | sselpwd.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | ssexd 5243 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
4 | 3, 2 | elpwd 4538 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: knatar 7208 marypha1 9123 fin1a2lem7 10093 canthp1lem2 10340 wunss 10399 ramub1lem1 16655 mreexd 17268 mreexexlemd 17270 mreexexlem4d 17273 opsrval 21157 selvfval 21237 cncls 22333 fbasrn 22943 rnelfmlem 23011 ustssel 23265 pwrssmgc 31180 crefi 31699 ldsysgenld 32028 ldgenpisyslem1 32031 bj-ismoored 35205 bj-imdirval2 35281 bj-iminvval2 35292 sticksstones2 40031 rfovcnvf1od 41501 fsovrfovd 41506 fsovfd 41509 fsovcnvlem 41510 ntrclsrcomplex 41534 clsk3nimkb 41539 clsk1indlem4 41543 clsk1indlem1 41544 ntrclsiso 41566 ntrclskb 41568 ntrclsk3 41569 ntrclsk13 41570 ntrneircomplex 41573 ntrneik3 41595 ntrneix3 41596 ntrneik13 41597 ntrneix13 41598 clsneircomplex 41602 clsneiel1 41607 neicvgrcomplex 41612 neicvgel1 41618 mnussd 41770 mnuprssd 41776 mnuop3d 41778 wessf1ornlem 42611 ovolsplit 43419 iscnrm3rlem3 46124 |
Copyright terms: Public domain | W3C validator |