![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgrprc | Structured version Visualization version GIF version |
Description: The class of simple graphs is a proper class (and therefore, because of prcssprc 5334, the classes of multigraphs, pseudographs and hypergraphs are proper classes, too). (Contributed by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
usgrprc | ⊢ USGraph ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} | |
2 | 1 | griedg0ssusgr 29305 | . 2 ⊢ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ⊆ USGraph |
3 | 1 | griedg0prc 29304 | . 2 ⊢ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V |
4 | prcssprc 5334 | . 2 ⊢ (({〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ⊆ USGraph ∧ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V) → USGraph ∉ V) | |
5 | 2, 3, 4 | mp2an 692 | 1 ⊢ USGraph ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ∉ wnel 3045 Vcvv 3479 ⊆ wss 3964 ∅c0 4340 {copab 5211 ⟶wf 6562 USGraphcusgr 29189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-sbc 3793 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fv 6574 df-2nd 8020 df-iedg 29039 df-usgr 29191 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |