MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrprc Structured version   Visualization version   GIF version

Theorem usgrprc 28523
Description: The class of simple graphs is a proper class (and therefore, because of prcssprc 5326, the classes of multigraphs, pseudographs and hypergraphs are proper classes, too). (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
usgrprc USGraph βˆ‰ V

Proof of Theorem usgrprc
Dummy variables 𝑣 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 {βŸ¨π‘£, π‘’βŸ© ∣ 𝑒:βˆ…βŸΆβˆ…} = {βŸ¨π‘£, π‘’βŸ© ∣ 𝑒:βˆ…βŸΆβˆ…}
21griedg0ssusgr 28522 . 2 {βŸ¨π‘£, π‘’βŸ© ∣ 𝑒:βˆ…βŸΆβˆ…} βŠ† USGraph
31griedg0prc 28521 . 2 {βŸ¨π‘£, π‘’βŸ© ∣ 𝑒:βˆ…βŸΆβˆ…} βˆ‰ V
4 prcssprc 5326 . 2 (({βŸ¨π‘£, π‘’βŸ© ∣ 𝑒:βˆ…βŸΆβˆ…} βŠ† USGraph ∧ {βŸ¨π‘£, π‘’βŸ© ∣ 𝑒:βˆ…βŸΆβˆ…} βˆ‰ V) β†’ USGraph βˆ‰ V)
52, 3, 4mp2an 691 1 USGraph βˆ‰ V
Colors of variables: wff setvar class
Syntax hints:   βˆ‰ wnel 3047  Vcvv 3475   βŠ† wss 3949  βˆ…c0 4323  {copab 5211  βŸΆwf 6540  USGraphcusgr 28409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fv 6552  df-2nd 7976  df-iedg 28259  df-usgr 28411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator