![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgrprc | Structured version Visualization version GIF version |
Description: The class of simple graphs is a proper class (and therefore, because of prcssprc 5329, the classes of multigraphs, pseudographs and hypergraphs are proper classes, too). (Contributed by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
usgrprc | β’ USGraph β V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . 3 β’ {β¨π£, πβ© β£ π:β βΆβ } = {β¨π£, πβ© β£ π:β βΆβ } | |
2 | 1 | griedg0ssusgr 29096 | . 2 β’ {β¨π£, πβ© β£ π:β βΆβ } β USGraph |
3 | 1 | griedg0prc 29095 | . 2 β’ {β¨π£, πβ© β£ π:β βΆβ } β V |
4 | prcssprc 5329 | . 2 β’ (({β¨π£, πβ© β£ π:β βΆβ } β USGraph β§ {β¨π£, πβ© β£ π:β βΆβ } β V) β USGraph β V) | |
5 | 2, 3, 4 | mp2an 690 | 1 β’ USGraph β V |
Colors of variables: wff setvar class |
Syntax hints: β wnel 3042 Vcvv 3471 β wss 3947 β c0 4324 {copab 5212 βΆwf 6547 USGraphcusgr 28980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fv 6559 df-2nd 7998 df-iedg 28830 df-usgr 28982 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |