| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgrprc | Structured version Visualization version GIF version | ||
| Description: The class of simple graphs is a proper class (and therefore, because of prcssprc 5290, the classes of multigraphs, pseudographs and hypergraphs are proper classes, too). (Contributed by AV, 27-Dec-2020.) |
| Ref | Expression |
|---|---|
| usgrprc | ⊢ USGraph ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} | |
| 2 | 1 | griedg0ssusgr 29199 | . 2 ⊢ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ⊆ USGraph |
| 3 | 1 | griedg0prc 29198 | . 2 ⊢ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V |
| 4 | prcssprc 5290 | . 2 ⊢ (({〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ⊆ USGraph ∧ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V) → USGraph ∉ V) | |
| 5 | 2, 3, 4 | mp2an 692 | 1 ⊢ USGraph ∉ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∉ wnel 3031 Vcvv 3455 ⊆ wss 3922 ∅c0 4304 {copab 5177 ⟶wf 6515 USGraphcusgr 29083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fv 6527 df-2nd 7978 df-iedg 28933 df-usgr 29085 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |