MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrprc Structured version   Visualization version   GIF version

Theorem usgrprc 29303
Description: The class of simple graphs is a proper class (and therefore, because of prcssprc 5345, the classes of multigraphs, pseudographs and hypergraphs are proper classes, too). (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
usgrprc USGraph ∉ V

Proof of Theorem usgrprc
Dummy variables 𝑣 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅}
21griedg0ssusgr 29302 . 2 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ⊆ USGraph
31griedg0prc 29301 . 2 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V
4 prcssprc 5345 . 2 (({⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ⊆ USGraph ∧ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V) → USGraph ∉ V)
52, 3, 4mp2an 691 1 USGraph ∉ V
Colors of variables: wff setvar class
Syntax hints:  wnel 3052  Vcvv 3488  wss 3976  c0 4352  {copab 5228  wf 6571  USGraphcusgr 29186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fv 6583  df-2nd 8033  df-iedg 29036  df-usgr 29188
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator