MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrprc Structured version   Visualization version   GIF version

Theorem usgrprc 29306
Description: The class of simple graphs is a proper class (and therefore, because of prcssprc 5334, the classes of multigraphs, pseudographs and hypergraphs are proper classes, too). (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
usgrprc USGraph ∉ V

Proof of Theorem usgrprc
Dummy variables 𝑣 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅}
21griedg0ssusgr 29305 . 2 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ⊆ USGraph
31griedg0prc 29304 . 2 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V
4 prcssprc 5334 . 2 (({⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ⊆ USGraph ∧ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V) → USGraph ∉ V)
52, 3, 4mp2an 692 1 USGraph ∉ V
Colors of variables: wff setvar class
Syntax hints:  wnel 3045  Vcvv 3479  wss 3964  c0 4340  {copab 5211  wf 6562  USGraphcusgr 29189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-sbc 3793  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fv 6574  df-2nd 8020  df-iedg 29039  df-usgr 29191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator