| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgrprc | Structured version Visualization version GIF version | ||
| Description: The class of simple graphs is a proper class (and therefore, because of prcssprc 5277, the classes of multigraphs, pseudographs and hypergraphs are proper classes, too). (Contributed by AV, 27-Dec-2020.) |
| Ref | Expression |
|---|---|
| usgrprc | ⊢ USGraph ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} | |
| 2 | 1 | griedg0ssusgr 29168 | . 2 ⊢ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ⊆ USGraph |
| 3 | 1 | griedg0prc 29167 | . 2 ⊢ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V |
| 4 | prcssprc 5277 | . 2 ⊢ (({〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ⊆ USGraph ∧ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V) → USGraph ∉ V) | |
| 5 | 2, 3, 4 | mp2an 692 | 1 ⊢ USGraph ∉ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∉ wnel 3029 Vcvv 3444 ⊆ wss 3911 ∅c0 4292 {copab 5164 ⟶wf 6495 USGraphcusgr 29052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fv 6507 df-2nd 7948 df-iedg 28902 df-usgr 29054 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |