MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrprc Structured version   Visualization version   GIF version

Theorem usgrprc 29097
Description: The class of simple graphs is a proper class (and therefore, because of prcssprc 5329, the classes of multigraphs, pseudographs and hypergraphs are proper classes, too). (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
usgrprc USGraph βˆ‰ V

Proof of Theorem usgrprc
Dummy variables 𝑣 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2727 . . 3 {βŸ¨π‘£, π‘’βŸ© ∣ 𝑒:βˆ…βŸΆβˆ…} = {βŸ¨π‘£, π‘’βŸ© ∣ 𝑒:βˆ…βŸΆβˆ…}
21griedg0ssusgr 29096 . 2 {βŸ¨π‘£, π‘’βŸ© ∣ 𝑒:βˆ…βŸΆβˆ…} βŠ† USGraph
31griedg0prc 29095 . 2 {βŸ¨π‘£, π‘’βŸ© ∣ 𝑒:βˆ…βŸΆβˆ…} βˆ‰ V
4 prcssprc 5329 . 2 (({βŸ¨π‘£, π‘’βŸ© ∣ 𝑒:βˆ…βŸΆβˆ…} βŠ† USGraph ∧ {βŸ¨π‘£, π‘’βŸ© ∣ 𝑒:βˆ…βŸΆβˆ…} βˆ‰ V) β†’ USGraph βˆ‰ V)
52, 3, 4mp2an 690 1 USGraph βˆ‰ V
Colors of variables: wff setvar class
Syntax hints:   βˆ‰ wnel 3042  Vcvv 3471   βŠ† wss 3947  βˆ…c0 4324  {copab 5212  βŸΆwf 6547  USGraphcusgr 28980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fv 6559  df-2nd 7998  df-iedg 28830  df-usgr 28982
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator