MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrprc Structured version   Visualization version   GIF version

Theorem usgrprc 29200
Description: The class of simple graphs is a proper class (and therefore, because of prcssprc 5290, the classes of multigraphs, pseudographs and hypergraphs are proper classes, too). (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
usgrprc USGraph ∉ V

Proof of Theorem usgrprc
Dummy variables 𝑣 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅}
21griedg0ssusgr 29199 . 2 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ⊆ USGraph
31griedg0prc 29198 . 2 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V
4 prcssprc 5290 . 2 (({⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ⊆ USGraph ∧ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V) → USGraph ∉ V)
52, 3, 4mp2an 692 1 USGraph ∉ V
Colors of variables: wff setvar class
Syntax hints:  wnel 3031  Vcvv 3455  wss 3922  c0 4304  {copab 5177  wf 6515  USGraphcusgr 29083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fv 6527  df-2nd 7978  df-iedg 28933  df-usgr 29085
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator