| Metamath Proof Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > usgrprc | Structured version Visualization version GIF version | ||
| Description: The class of simple graphs is a proper class (and therefore, because of prcssprc 5309, the classes of multigraphs, pseudographs and hypergraphs are proper classes, too). (Contributed by AV, 27-Dec-2020.) | 
| Ref | Expression | 
|---|---|
| usgrprc | ⊢ USGraph ∉ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} | |
| 2 | 1 | griedg0ssusgr 29225 | . 2 ⊢ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ⊆ USGraph | 
| 3 | 1 | griedg0prc 29224 | . 2 ⊢ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V | 
| 4 | prcssprc 5309 | . 2 ⊢ (({〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ⊆ USGraph ∧ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V) → USGraph ∉ V) | |
| 5 | 2, 3, 4 | mp2an 692 | 1 ⊢ USGraph ∉ V | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∉ wnel 3035 Vcvv 3464 ⊆ wss 3933 ∅c0 4315 {copab 5187 ⟶wf 6538 USGraphcusgr 29109 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fv 6550 df-2nd 7998 df-iedg 28959 df-usgr 29111 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |