![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgrprc | Structured version Visualization version GIF version |
Description: The class of simple graphs is a proper class (and therefore, because of prcssprc 5326, the classes of multigraphs, pseudographs and hypergraphs are proper classes, too). (Contributed by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
usgrprc | β’ USGraph β V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 β’ {β¨π£, πβ© β£ π:β βΆβ } = {β¨π£, πβ© β£ π:β βΆβ } | |
2 | 1 | griedg0ssusgr 28522 | . 2 β’ {β¨π£, πβ© β£ π:β βΆβ } β USGraph |
3 | 1 | griedg0prc 28521 | . 2 β’ {β¨π£, πβ© β£ π:β βΆβ } β V |
4 | prcssprc 5326 | . 2 β’ (({β¨π£, πβ© β£ π:β βΆβ } β USGraph β§ {β¨π£, πβ© β£ π:β βΆβ } β V) β USGraph β V) | |
5 | 2, 3, 4 | mp2an 691 | 1 β’ USGraph β V |
Colors of variables: wff setvar class |
Syntax hints: β wnel 3047 Vcvv 3475 β wss 3949 β c0 4323 {copab 5211 βΆwf 6540 USGraphcusgr 28409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fv 6552 df-2nd 7976 df-iedg 28259 df-usgr 28411 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |