Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssexd | Structured version Visualization version GIF version |
Description: A subclass of a set is a set. Deduction form of ssexg 5248. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssexd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
ssexd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssexd | ⊢ (𝜑 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssexd.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
3 | ssexg 5248 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 ∈ V) |
Copyright terms: Public domain | W3C validator |