MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgrusgrprc Structured version   Visualization version   GIF version

Theorem rgrusgrprc 29622
Description: The class of 0-regular simple graphs is a proper class. (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
rgrusgrprc {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V
Distinct variable group:   𝑣,𝑔

Proof of Theorem rgrusgrprc
Dummy variables 𝑒 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elopab 5537 . . . . 5 (𝑝 ∈ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ↔ ∃𝑣𝑒(𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅))
2 f0bi 6792 . . . . . . . . . 10 (𝑒:∅⟶∅ ↔ 𝑒 = ∅)
3 opeq2 4879 . . . . . . . . . . . 12 (𝑒 = ∅ → ⟨𝑣, 𝑒⟩ = ⟨𝑣, ∅⟩)
4 usgr0eop 29278 . . . . . . . . . . . . 13 (𝑣 ∈ V → ⟨𝑣, ∅⟩ ∈ USGraph)
54elv 3483 . . . . . . . . . . . 12 𝑣, ∅⟩ ∈ USGraph
63, 5eqeltrdi 2847 . . . . . . . . . . 11 (𝑒 = ∅ → ⟨𝑣, 𝑒⟩ ∈ USGraph)
7 vex 3482 . . . . . . . . . . . . 13 𝑣 ∈ V
8 vex 3482 . . . . . . . . . . . . 13 𝑒 ∈ V
97, 8opiedgfvi 29042 . . . . . . . . . . . 12 (iEdg‘⟨𝑣, 𝑒⟩) = 𝑒
10 id 22 . . . . . . . . . . . 12 (𝑒 = ∅ → 𝑒 = ∅)
119, 10eqtrid 2787 . . . . . . . . . . 11 (𝑒 = ∅ → (iEdg‘⟨𝑣, 𝑒⟩) = ∅)
126, 11jca 511 . . . . . . . . . 10 (𝑒 = ∅ → (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (iEdg‘⟨𝑣, 𝑒⟩) = ∅))
132, 12sylbi 217 . . . . . . . . 9 (𝑒:∅⟶∅ → (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (iEdg‘⟨𝑣, 𝑒⟩) = ∅))
1413adantl 481 . . . . . . . 8 ((𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (iEdg‘⟨𝑣, 𝑒⟩) = ∅))
15 eleq1 2827 . . . . . . . . . 10 (𝑝 = ⟨𝑣, 𝑒⟩ → (𝑝 ∈ USGraph ↔ ⟨𝑣, 𝑒⟩ ∈ USGraph))
16 fveqeq2 6916 . . . . . . . . . 10 (𝑝 = ⟨𝑣, 𝑒⟩ → ((iEdg‘𝑝) = ∅ ↔ (iEdg‘⟨𝑣, 𝑒⟩) = ∅))
1715, 16anbi12d 632 . . . . . . . . 9 (𝑝 = ⟨𝑣, 𝑒⟩ → ((𝑝 ∈ USGraph ∧ (iEdg‘𝑝) = ∅) ↔ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (iEdg‘⟨𝑣, 𝑒⟩) = ∅)))
1817adantr 480 . . . . . . . 8 ((𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → ((𝑝 ∈ USGraph ∧ (iEdg‘𝑝) = ∅) ↔ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (iEdg‘⟨𝑣, 𝑒⟩) = ∅)))
1914, 18mpbird 257 . . . . . . 7 ((𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → (𝑝 ∈ USGraph ∧ (iEdg‘𝑝) = ∅))
20 fveqeq2 6916 . . . . . . . 8 (𝑔 = 𝑝 → ((iEdg‘𝑔) = ∅ ↔ (iEdg‘𝑝) = ∅))
2120elrab 3695 . . . . . . 7 (𝑝 ∈ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ↔ (𝑝 ∈ USGraph ∧ (iEdg‘𝑝) = ∅))
2219, 21sylibr 234 . . . . . 6 ((𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → 𝑝 ∈ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅})
2322exlimivv 1930 . . . . 5 (∃𝑣𝑒(𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → 𝑝 ∈ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅})
241, 23sylbi 217 . . . 4 (𝑝 ∈ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} → 𝑝 ∈ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅})
2524ssriv 3999 . . 3 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ⊆ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅}
26 eqid 2735 . . . 4 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅}
2726griedg0prc 29296 . . 3 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V
28 prcssprc 5333 . . 3 (({⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ⊆ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ∧ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V) → {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ∉ V)
2925, 27, 28mp2an 692 . 2 {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ∉ V
30 df-3an 1088 . . . . . . . 8 ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0) ↔ ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))
3130bicomi 224 . . . . . . 7 (((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0) ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))
3231a1i 11 . . . . . 6 (𝑔 ∈ USGraph → (((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0) ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
33 0xnn0 12603 . . . . . . 7 0 ∈ ℕ0*
34 ibar 528 . . . . . . 7 ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) → (∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ↔ ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
3533, 34mpan2 691 . . . . . 6 (𝑔 ∈ USGraph → (∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ↔ ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
36 eqid 2735 . . . . . . . 8 (Vtx‘𝑔) = (Vtx‘𝑔)
37 eqid 2735 . . . . . . . 8 (VtxDeg‘𝑔) = (VtxDeg‘𝑔)
3836, 37isrusgr0 29599 . . . . . . 7 ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) → (𝑔 RegUSGraph 0 ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
3933, 38mpan2 691 . . . . . 6 (𝑔 ∈ USGraph → (𝑔 RegUSGraph 0 ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
4032, 35, 393bitr4d 311 . . . . 5 (𝑔 ∈ USGraph → (∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ↔ 𝑔 RegUSGraph 0))
4140rabbiia 3437 . . . 4 {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔 ∈ USGraph ∣ 𝑔 RegUSGraph 0}
42 usgr0edg0rusgr 29608 . . . . . 6 (𝑔 ∈ USGraph → (𝑔 RegUSGraph 0 ↔ (Edg‘𝑔) = ∅))
43 usgruhgr 29218 . . . . . . 7 (𝑔 ∈ USGraph → 𝑔 ∈ UHGraph)
44 uhgriedg0edg0 29159 . . . . . . 7 (𝑔 ∈ UHGraph → ((Edg‘𝑔) = ∅ ↔ (iEdg‘𝑔) = ∅))
4543, 44syl 17 . . . . . 6 (𝑔 ∈ USGraph → ((Edg‘𝑔) = ∅ ↔ (iEdg‘𝑔) = ∅))
4642, 45bitrd 279 . . . . 5 (𝑔 ∈ USGraph → (𝑔 RegUSGraph 0 ↔ (iEdg‘𝑔) = ∅))
4746rabbiia 3437 . . . 4 {𝑔 ∈ USGraph ∣ 𝑔 RegUSGraph 0} = {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅}
4841, 47eqtri 2763 . . 3 {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅}
49 neleq1 3050 . . 3 ({𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} → ({𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V ↔ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ∉ V))
5048, 49ax-mp 5 . 2 ({𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V ↔ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ∉ V)
5129, 50mpbir 231 1 {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wnel 3044  wral 3059  {crab 3433  Vcvv 3478  wss 3963  c0 4339  cop 4637   class class class wbr 5148  {copab 5210  wf 6559  cfv 6563  0cc0 11153  0*cxnn0 12597  Vtxcvtx 29028  iEdgciedg 29029  Edgcedg 29079  UHGraphcuhgr 29088  USGraphcusgr 29181  VtxDegcvtxdg 29498   RegUSGraph crusgr 29589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-xadd 13153  df-fz 13545  df-hash 14367  df-iedg 29031  df-edg 29080  df-uhgr 29090  df-upgr 29114  df-uspgr 29182  df-usgr 29183  df-vtxdg 29499  df-rgr 29590  df-rusgr 29591
This theorem is referenced by:  rusgrprc  29623
  Copyright terms: Public domain W3C validator