MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgrusgrprc Structured version   Visualization version   GIF version

Theorem rgrusgrprc 27859
Description: The class of 0-regular simple graphs is a proper class. (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
rgrusgrprc {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V
Distinct variable group:   𝑣,𝑔

Proof of Theorem rgrusgrprc
Dummy variables 𝑒 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elopab 5433 . . . . 5 (𝑝 ∈ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ↔ ∃𝑣𝑒(𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅))
2 f0bi 6641 . . . . . . . . . 10 (𝑒:∅⟶∅ ↔ 𝑒 = ∅)
3 opeq2 4802 . . . . . . . . . . . 12 (𝑒 = ∅ → ⟨𝑣, 𝑒⟩ = ⟨𝑣, ∅⟩)
4 usgr0eop 27516 . . . . . . . . . . . . 13 (𝑣 ∈ V → ⟨𝑣, ∅⟩ ∈ USGraph)
54elv 3428 . . . . . . . . . . . 12 𝑣, ∅⟩ ∈ USGraph
63, 5eqeltrdi 2847 . . . . . . . . . . 11 (𝑒 = ∅ → ⟨𝑣, 𝑒⟩ ∈ USGraph)
7 vex 3426 . . . . . . . . . . . . 13 𝑣 ∈ V
8 vex 3426 . . . . . . . . . . . . 13 𝑒 ∈ V
97, 8opiedgfvi 27283 . . . . . . . . . . . 12 (iEdg‘⟨𝑣, 𝑒⟩) = 𝑒
10 id 22 . . . . . . . . . . . 12 (𝑒 = ∅ → 𝑒 = ∅)
119, 10syl5eq 2791 . . . . . . . . . . 11 (𝑒 = ∅ → (iEdg‘⟨𝑣, 𝑒⟩) = ∅)
126, 11jca 511 . . . . . . . . . 10 (𝑒 = ∅ → (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (iEdg‘⟨𝑣, 𝑒⟩) = ∅))
132, 12sylbi 216 . . . . . . . . 9 (𝑒:∅⟶∅ → (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (iEdg‘⟨𝑣, 𝑒⟩) = ∅))
1413adantl 481 . . . . . . . 8 ((𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (iEdg‘⟨𝑣, 𝑒⟩) = ∅))
15 eleq1 2826 . . . . . . . . . 10 (𝑝 = ⟨𝑣, 𝑒⟩ → (𝑝 ∈ USGraph ↔ ⟨𝑣, 𝑒⟩ ∈ USGraph))
16 fveqeq2 6765 . . . . . . . . . 10 (𝑝 = ⟨𝑣, 𝑒⟩ → ((iEdg‘𝑝) = ∅ ↔ (iEdg‘⟨𝑣, 𝑒⟩) = ∅))
1715, 16anbi12d 630 . . . . . . . . 9 (𝑝 = ⟨𝑣, 𝑒⟩ → ((𝑝 ∈ USGraph ∧ (iEdg‘𝑝) = ∅) ↔ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (iEdg‘⟨𝑣, 𝑒⟩) = ∅)))
1817adantr 480 . . . . . . . 8 ((𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → ((𝑝 ∈ USGraph ∧ (iEdg‘𝑝) = ∅) ↔ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (iEdg‘⟨𝑣, 𝑒⟩) = ∅)))
1914, 18mpbird 256 . . . . . . 7 ((𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → (𝑝 ∈ USGraph ∧ (iEdg‘𝑝) = ∅))
20 fveqeq2 6765 . . . . . . . 8 (𝑔 = 𝑝 → ((iEdg‘𝑔) = ∅ ↔ (iEdg‘𝑝) = ∅))
2120elrab 3617 . . . . . . 7 (𝑝 ∈ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ↔ (𝑝 ∈ USGraph ∧ (iEdg‘𝑝) = ∅))
2219, 21sylibr 233 . . . . . 6 ((𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → 𝑝 ∈ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅})
2322exlimivv 1936 . . . . 5 (∃𝑣𝑒(𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → 𝑝 ∈ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅})
241, 23sylbi 216 . . . 4 (𝑝 ∈ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} → 𝑝 ∈ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅})
2524ssriv 3921 . . 3 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ⊆ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅}
26 eqid 2738 . . . 4 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅}
2726griedg0prc 27534 . . 3 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V
28 prcssprc 5244 . . 3 (({⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ⊆ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ∧ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V) → {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ∉ V)
2925, 27, 28mp2an 688 . 2 {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ∉ V
30 df-3an 1087 . . . . . . . 8 ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0) ↔ ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))
3130bicomi 223 . . . . . . 7 (((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0) ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))
3231a1i 11 . . . . . 6 (𝑔 ∈ USGraph → (((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0) ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
33 0xnn0 12241 . . . . . . 7 0 ∈ ℕ0*
34 ibar 528 . . . . . . 7 ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) → (∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ↔ ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
3533, 34mpan2 687 . . . . . 6 (𝑔 ∈ USGraph → (∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ↔ ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
36 eqid 2738 . . . . . . . 8 (Vtx‘𝑔) = (Vtx‘𝑔)
37 eqid 2738 . . . . . . . 8 (VtxDeg‘𝑔) = (VtxDeg‘𝑔)
3836, 37isrusgr0 27836 . . . . . . 7 ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) → (𝑔 RegUSGraph 0 ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
3933, 38mpan2 687 . . . . . 6 (𝑔 ∈ USGraph → (𝑔 RegUSGraph 0 ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
4032, 35, 393bitr4d 310 . . . . 5 (𝑔 ∈ USGraph → (∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ↔ 𝑔 RegUSGraph 0))
4140rabbiia 3396 . . . 4 {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔 ∈ USGraph ∣ 𝑔 RegUSGraph 0}
42 usgr0edg0rusgr 27845 . . . . . 6 (𝑔 ∈ USGraph → (𝑔 RegUSGraph 0 ↔ (Edg‘𝑔) = ∅))
43 usgruhgr 27456 . . . . . . 7 (𝑔 ∈ USGraph → 𝑔 ∈ UHGraph)
44 uhgriedg0edg0 27400 . . . . . . 7 (𝑔 ∈ UHGraph → ((Edg‘𝑔) = ∅ ↔ (iEdg‘𝑔) = ∅))
4543, 44syl 17 . . . . . 6 (𝑔 ∈ USGraph → ((Edg‘𝑔) = ∅ ↔ (iEdg‘𝑔) = ∅))
4642, 45bitrd 278 . . . . 5 (𝑔 ∈ USGraph → (𝑔 RegUSGraph 0 ↔ (iEdg‘𝑔) = ∅))
4746rabbiia 3396 . . . 4 {𝑔 ∈ USGraph ∣ 𝑔 RegUSGraph 0} = {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅}
4841, 47eqtri 2766 . . 3 {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅}
49 neleq1 3053 . . 3 ({𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} → ({𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V ↔ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ∉ V))
5048, 49ax-mp 5 . 2 ({𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V ↔ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ∉ V)
5129, 50mpbir 230 1 {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wnel 3048  wral 3063  {crab 3067  Vcvv 3422  wss 3883  c0 4253  cop 4564   class class class wbr 5070  {copab 5132  wf 6414  cfv 6418  0cc0 10802  0*cxnn0 12235  Vtxcvtx 27269  iEdgciedg 27270  Edgcedg 27320  UHGraphcuhgr 27329  USGraphcusgr 27422  VtxDegcvtxdg 27735   RegUSGraph crusgr 27826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-xadd 12778  df-fz 13169  df-hash 13973  df-iedg 27272  df-edg 27321  df-uhgr 27331  df-upgr 27355  df-uspgr 27423  df-usgr 27424  df-vtxdg 27736  df-rgr 27827  df-rusgr 27828
This theorem is referenced by:  rusgrprc  27860
  Copyright terms: Public domain W3C validator