MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgrusgrprc Structured version   Visualization version   GIF version

Theorem rgrusgrprc 29517
Description: The class of 0-regular simple graphs is a proper class. (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
rgrusgrprc {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V
Distinct variable group:   𝑣,𝑔

Proof of Theorem rgrusgrprc
Dummy variables 𝑒 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elopab 5487 . . . . 5 (𝑝 ∈ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ↔ ∃𝑣𝑒(𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅))
2 f0bi 6743 . . . . . . . . . 10 (𝑒:∅⟶∅ ↔ 𝑒 = ∅)
3 opeq2 4838 . . . . . . . . . . . 12 (𝑒 = ∅ → ⟨𝑣, 𝑒⟩ = ⟨𝑣, ∅⟩)
4 usgr0eop 29173 . . . . . . . . . . . . 13 (𝑣 ∈ V → ⟨𝑣, ∅⟩ ∈ USGraph)
54elv 3452 . . . . . . . . . . . 12 𝑣, ∅⟩ ∈ USGraph
63, 5eqeltrdi 2836 . . . . . . . . . . 11 (𝑒 = ∅ → ⟨𝑣, 𝑒⟩ ∈ USGraph)
7 vex 3451 . . . . . . . . . . . . 13 𝑣 ∈ V
8 vex 3451 . . . . . . . . . . . . 13 𝑒 ∈ V
97, 8opiedgfvi 28937 . . . . . . . . . . . 12 (iEdg‘⟨𝑣, 𝑒⟩) = 𝑒
10 id 22 . . . . . . . . . . . 12 (𝑒 = ∅ → 𝑒 = ∅)
119, 10eqtrid 2776 . . . . . . . . . . 11 (𝑒 = ∅ → (iEdg‘⟨𝑣, 𝑒⟩) = ∅)
126, 11jca 511 . . . . . . . . . 10 (𝑒 = ∅ → (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (iEdg‘⟨𝑣, 𝑒⟩) = ∅))
132, 12sylbi 217 . . . . . . . . 9 (𝑒:∅⟶∅ → (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (iEdg‘⟨𝑣, 𝑒⟩) = ∅))
1413adantl 481 . . . . . . . 8 ((𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (iEdg‘⟨𝑣, 𝑒⟩) = ∅))
15 eleq1 2816 . . . . . . . . . 10 (𝑝 = ⟨𝑣, 𝑒⟩ → (𝑝 ∈ USGraph ↔ ⟨𝑣, 𝑒⟩ ∈ USGraph))
16 fveqeq2 6867 . . . . . . . . . 10 (𝑝 = ⟨𝑣, 𝑒⟩ → ((iEdg‘𝑝) = ∅ ↔ (iEdg‘⟨𝑣, 𝑒⟩) = ∅))
1715, 16anbi12d 632 . . . . . . . . 9 (𝑝 = ⟨𝑣, 𝑒⟩ → ((𝑝 ∈ USGraph ∧ (iEdg‘𝑝) = ∅) ↔ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (iEdg‘⟨𝑣, 𝑒⟩) = ∅)))
1817adantr 480 . . . . . . . 8 ((𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → ((𝑝 ∈ USGraph ∧ (iEdg‘𝑝) = ∅) ↔ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (iEdg‘⟨𝑣, 𝑒⟩) = ∅)))
1914, 18mpbird 257 . . . . . . 7 ((𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → (𝑝 ∈ USGraph ∧ (iEdg‘𝑝) = ∅))
20 fveqeq2 6867 . . . . . . . 8 (𝑔 = 𝑝 → ((iEdg‘𝑔) = ∅ ↔ (iEdg‘𝑝) = ∅))
2120elrab 3659 . . . . . . 7 (𝑝 ∈ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ↔ (𝑝 ∈ USGraph ∧ (iEdg‘𝑝) = ∅))
2219, 21sylibr 234 . . . . . 6 ((𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → 𝑝 ∈ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅})
2322exlimivv 1932 . . . . 5 (∃𝑣𝑒(𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → 𝑝 ∈ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅})
241, 23sylbi 217 . . . 4 (𝑝 ∈ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} → 𝑝 ∈ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅})
2524ssriv 3950 . . 3 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ⊆ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅}
26 eqid 2729 . . . 4 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅}
2726griedg0prc 29191 . . 3 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V
28 prcssprc 5282 . . 3 (({⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ⊆ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ∧ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V) → {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ∉ V)
2925, 27, 28mp2an 692 . 2 {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ∉ V
30 df-3an 1088 . . . . . . . 8 ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0) ↔ ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))
3130bicomi 224 . . . . . . 7 (((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0) ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))
3231a1i 11 . . . . . 6 (𝑔 ∈ USGraph → (((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0) ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
33 0xnn0 12521 . . . . . . 7 0 ∈ ℕ0*
34 ibar 528 . . . . . . 7 ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) → (∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ↔ ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
3533, 34mpan2 691 . . . . . 6 (𝑔 ∈ USGraph → (∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ↔ ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
36 eqid 2729 . . . . . . . 8 (Vtx‘𝑔) = (Vtx‘𝑔)
37 eqid 2729 . . . . . . . 8 (VtxDeg‘𝑔) = (VtxDeg‘𝑔)
3836, 37isrusgr0 29494 . . . . . . 7 ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) → (𝑔 RegUSGraph 0 ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
3933, 38mpan2 691 . . . . . 6 (𝑔 ∈ USGraph → (𝑔 RegUSGraph 0 ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
4032, 35, 393bitr4d 311 . . . . 5 (𝑔 ∈ USGraph → (∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ↔ 𝑔 RegUSGraph 0))
4140rabbiia 3409 . . . 4 {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔 ∈ USGraph ∣ 𝑔 RegUSGraph 0}
42 usgr0edg0rusgr 29503 . . . . . 6 (𝑔 ∈ USGraph → (𝑔 RegUSGraph 0 ↔ (Edg‘𝑔) = ∅))
43 usgruhgr 29113 . . . . . . 7 (𝑔 ∈ USGraph → 𝑔 ∈ UHGraph)
44 uhgriedg0edg0 29054 . . . . . . 7 (𝑔 ∈ UHGraph → ((Edg‘𝑔) = ∅ ↔ (iEdg‘𝑔) = ∅))
4543, 44syl 17 . . . . . 6 (𝑔 ∈ USGraph → ((Edg‘𝑔) = ∅ ↔ (iEdg‘𝑔) = ∅))
4642, 45bitrd 279 . . . . 5 (𝑔 ∈ USGraph → (𝑔 RegUSGraph 0 ↔ (iEdg‘𝑔) = ∅))
4746rabbiia 3409 . . . 4 {𝑔 ∈ USGraph ∣ 𝑔 RegUSGraph 0} = {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅}
4841, 47eqtri 2752 . . 3 {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅}
49 neleq1 3035 . . 3 ({𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} → ({𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V ↔ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ∉ V))
5048, 49ax-mp 5 . 2 ({𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V ↔ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ∉ V)
5129, 50mpbir 231 1 {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wnel 3029  wral 3044  {crab 3405  Vcvv 3447  wss 3914  c0 4296  cop 4595   class class class wbr 5107  {copab 5169  wf 6507  cfv 6511  0cc0 11068  0*cxnn0 12515  Vtxcvtx 28923  iEdgciedg 28924  Edgcedg 28974  UHGraphcuhgr 28983  USGraphcusgr 29076  VtxDegcvtxdg 29393   RegUSGraph crusgr 29484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-xadd 13073  df-fz 13469  df-hash 14296  df-iedg 28926  df-edg 28975  df-uhgr 28985  df-upgr 29009  df-uspgr 29077  df-usgr 29078  df-vtxdg 29394  df-rgr 29485  df-rusgr 29486
This theorem is referenced by:  rusgrprc  29518
  Copyright terms: Public domain W3C validator