MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgrusgrprc Structured version   Visualization version   GIF version

Theorem rgrusgrprc 27373
Description: The class of 0-regular simple graphs is a proper class. (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
rgrusgrprc {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V
Distinct variable group:   𝑣,𝑔

Proof of Theorem rgrusgrprc
Dummy variables 𝑒 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elopab 5416 . . . . 5 (𝑝 ∈ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ↔ ∃𝑣𝑒(𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅))
2 f0bi 6564 . . . . . . . . . 10 (𝑒:∅⟶∅ ↔ 𝑒 = ∅)
3 opeq2 4806 . . . . . . . . . . . 12 (𝑒 = ∅ → ⟨𝑣, 𝑒⟩ = ⟨𝑣, ∅⟩)
4 usgr0eop 27030 . . . . . . . . . . . . 13 (𝑣 ∈ V → ⟨𝑣, ∅⟩ ∈ USGraph)
54elv 3501 . . . . . . . . . . . 12 𝑣, ∅⟩ ∈ USGraph
63, 5eqeltrdi 2923 . . . . . . . . . . 11 (𝑒 = ∅ → ⟨𝑣, 𝑒⟩ ∈ USGraph)
7 vex 3499 . . . . . . . . . . . . 13 𝑣 ∈ V
8 vex 3499 . . . . . . . . . . . . 13 𝑒 ∈ V
97, 8opiedgfvi 26797 . . . . . . . . . . . 12 (iEdg‘⟨𝑣, 𝑒⟩) = 𝑒
10 id 22 . . . . . . . . . . . 12 (𝑒 = ∅ → 𝑒 = ∅)
119, 10syl5eq 2870 . . . . . . . . . . 11 (𝑒 = ∅ → (iEdg‘⟨𝑣, 𝑒⟩) = ∅)
126, 11jca 514 . . . . . . . . . 10 (𝑒 = ∅ → (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (iEdg‘⟨𝑣, 𝑒⟩) = ∅))
132, 12sylbi 219 . . . . . . . . 9 (𝑒:∅⟶∅ → (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (iEdg‘⟨𝑣, 𝑒⟩) = ∅))
1413adantl 484 . . . . . . . 8 ((𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (iEdg‘⟨𝑣, 𝑒⟩) = ∅))
15 eleq1 2902 . . . . . . . . . 10 (𝑝 = ⟨𝑣, 𝑒⟩ → (𝑝 ∈ USGraph ↔ ⟨𝑣, 𝑒⟩ ∈ USGraph))
16 fveqeq2 6681 . . . . . . . . . 10 (𝑝 = ⟨𝑣, 𝑒⟩ → ((iEdg‘𝑝) = ∅ ↔ (iEdg‘⟨𝑣, 𝑒⟩) = ∅))
1715, 16anbi12d 632 . . . . . . . . 9 (𝑝 = ⟨𝑣, 𝑒⟩ → ((𝑝 ∈ USGraph ∧ (iEdg‘𝑝) = ∅) ↔ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (iEdg‘⟨𝑣, 𝑒⟩) = ∅)))
1817adantr 483 . . . . . . . 8 ((𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → ((𝑝 ∈ USGraph ∧ (iEdg‘𝑝) = ∅) ↔ (⟨𝑣, 𝑒⟩ ∈ USGraph ∧ (iEdg‘⟨𝑣, 𝑒⟩) = ∅)))
1914, 18mpbird 259 . . . . . . 7 ((𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → (𝑝 ∈ USGraph ∧ (iEdg‘𝑝) = ∅))
20 fveqeq2 6681 . . . . . . . 8 (𝑔 = 𝑝 → ((iEdg‘𝑔) = ∅ ↔ (iEdg‘𝑝) = ∅))
2120elrab 3682 . . . . . . 7 (𝑝 ∈ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ↔ (𝑝 ∈ USGraph ∧ (iEdg‘𝑝) = ∅))
2219, 21sylibr 236 . . . . . 6 ((𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → 𝑝 ∈ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅})
2322exlimivv 1933 . . . . 5 (∃𝑣𝑒(𝑝 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → 𝑝 ∈ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅})
241, 23sylbi 219 . . . 4 (𝑝 ∈ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} → 𝑝 ∈ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅})
2524ssriv 3973 . . 3 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ⊆ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅}
26 eqid 2823 . . . 4 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅}
2726griedg0prc 27048 . . 3 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V
28 prcssprc 5231 . . 3 (({⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ⊆ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ∧ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V) → {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ∉ V)
2925, 27, 28mp2an 690 . 2 {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ∉ V
30 df-3an 1085 . . . . . . . 8 ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0) ↔ ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))
3130bicomi 226 . . . . . . 7 (((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0) ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))
3231a1i 11 . . . . . 6 (𝑔 ∈ USGraph → (((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0) ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
33 0xnn0 11976 . . . . . . 7 0 ∈ ℕ0*
34 ibar 531 . . . . . . 7 ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) → (∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ↔ ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
3533, 34mpan2 689 . . . . . 6 (𝑔 ∈ USGraph → (∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ↔ ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
36 eqid 2823 . . . . . . . 8 (Vtx‘𝑔) = (Vtx‘𝑔)
37 eqid 2823 . . . . . . . 8 (VtxDeg‘𝑔) = (VtxDeg‘𝑔)
3836, 37isrusgr0 27350 . . . . . . 7 ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0*) → (𝑔 RegUSGraph 0 ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
3933, 38mpan2 689 . . . . . 6 (𝑔 ∈ USGraph → (𝑔 RegUSGraph 0 ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
4032, 35, 393bitr4d 313 . . . . 5 (𝑔 ∈ USGraph → (∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ↔ 𝑔 RegUSGraph 0))
4140rabbiia 3474 . . . 4 {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔 ∈ USGraph ∣ 𝑔 RegUSGraph 0}
42 usgr0edg0rusgr 27359 . . . . . 6 (𝑔 ∈ USGraph → (𝑔 RegUSGraph 0 ↔ (Edg‘𝑔) = ∅))
43 usgruhgr 26970 . . . . . . 7 (𝑔 ∈ USGraph → 𝑔 ∈ UHGraph)
44 uhgriedg0edg0 26914 . . . . . . 7 (𝑔 ∈ UHGraph → ((Edg‘𝑔) = ∅ ↔ (iEdg‘𝑔) = ∅))
4543, 44syl 17 . . . . . 6 (𝑔 ∈ USGraph → ((Edg‘𝑔) = ∅ ↔ (iEdg‘𝑔) = ∅))
4642, 45bitrd 281 . . . . 5 (𝑔 ∈ USGraph → (𝑔 RegUSGraph 0 ↔ (iEdg‘𝑔) = ∅))
4746rabbiia 3474 . . . 4 {𝑔 ∈ USGraph ∣ 𝑔 RegUSGraph 0} = {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅}
4841, 47eqtri 2846 . . 3 {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅}
49 neleq1 3130 . . 3 ({𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} → ({𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V ↔ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ∉ V))
5048, 49ax-mp 5 . 2 ({𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V ↔ {𝑔 ∈ USGraph ∣ (iEdg‘𝑔) = ∅} ∉ V)
5129, 50mpbir 233 1 {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wnel 3125  wral 3140  {crab 3144  Vcvv 3496  wss 3938  c0 4293  cop 4575   class class class wbr 5068  {copab 5130  wf 6353  cfv 6357  0cc0 10539  0*cxnn0 11970  Vtxcvtx 26783  iEdgciedg 26784  Edgcedg 26834  UHGraphcuhgr 26843  USGraphcusgr 26936  VtxDegcvtxdg 27249   RegUSGraph crusgr 27340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-xadd 12511  df-fz 12896  df-hash 13694  df-iedg 26786  df-edg 26835  df-uhgr 26845  df-upgr 26869  df-uspgr 26937  df-usgr 26938  df-vtxdg 27250  df-rgr 27341  df-rusgr 27342
This theorem is referenced by:  rusgrprc  27374
  Copyright terms: Public domain W3C validator