| Step | Hyp | Ref
| Expression |
| 1 | | eldifi 4131 |
. . . . 5
⊢ (𝑥 ∈ (𝑉 ∖ {𝑁}) → 𝑥 ∈ 𝑉) |
| 2 | | id 22 |
. . . . 5
⊢ (𝑁 ∈ 𝑉 → 𝑁 ∈ 𝑉) |
| 3 | | prelpwi 5452 |
. . . . 5
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → {𝑥, 𝑁} ∈ 𝒫 𝑉) |
| 4 | 1, 2, 3 | syl2anr 597 |
. . . 4
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → {𝑥, 𝑁} ∈ 𝒫 𝑉) |
| 5 | 1 | adantl 481 |
. . . . 5
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → 𝑥 ∈ 𝑉) |
| 6 | | eldifsni 4790 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑉 ∖ {𝑁}) → 𝑥 ≠ 𝑁) |
| 7 | 6 | adantl 481 |
. . . . . 6
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → 𝑥 ≠ 𝑁) |
| 8 | | eqidd 2738 |
. . . . . 6
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → {𝑥, 𝑁} = {𝑥, 𝑁}) |
| 9 | 7, 8 | jca 511 |
. . . . 5
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → (𝑥 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑥, 𝑁})) |
| 10 | | id 22 |
. . . . . 6
⊢ (𝑥 ∈ 𝑉 → 𝑥 ∈ 𝑉) |
| 11 | | neeq1 3003 |
. . . . . . . 8
⊢ (𝑎 = 𝑥 → (𝑎 ≠ 𝑁 ↔ 𝑥 ≠ 𝑁)) |
| 12 | | preq1 4733 |
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → {𝑎, 𝑁} = {𝑥, 𝑁}) |
| 13 | 12 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑎 = 𝑥 → ({𝑥, 𝑁} = {𝑎, 𝑁} ↔ {𝑥, 𝑁} = {𝑥, 𝑁})) |
| 14 | 11, 13 | anbi12d 632 |
. . . . . . 7
⊢ (𝑎 = 𝑥 → ((𝑎 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑎, 𝑁}) ↔ (𝑥 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑥, 𝑁}))) |
| 15 | 14 | adantl 481 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑎 = 𝑥) → ((𝑎 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑎, 𝑁}) ↔ (𝑥 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑥, 𝑁}))) |
| 16 | 10, 15 | rspcedv 3615 |
. . . . 5
⊢ (𝑥 ∈ 𝑉 → ((𝑥 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑥, 𝑁}) → ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑎, 𝑁}))) |
| 17 | 5, 9, 16 | sylc 65 |
. . . 4
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑎, 𝑁})) |
| 18 | | cusgrfi.p |
. . . . . 6
⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} |
| 19 | 18 | eleq2i 2833 |
. . . . 5
⊢ ({𝑥, 𝑁} ∈ 𝑃 ↔ {𝑥, 𝑁} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})}) |
| 20 | | eqeq1 2741 |
. . . . . . . 8
⊢ (𝑣 = {𝑥, 𝑁} → (𝑣 = {𝑎, 𝑁} ↔ {𝑥, 𝑁} = {𝑎, 𝑁})) |
| 21 | 20 | anbi2d 630 |
. . . . . . 7
⊢ (𝑣 = {𝑥, 𝑁} → ((𝑎 ≠ 𝑁 ∧ 𝑣 = {𝑎, 𝑁}) ↔ (𝑎 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑎, 𝑁}))) |
| 22 | 21 | rexbidv 3179 |
. . . . . 6
⊢ (𝑣 = {𝑥, 𝑁} → (∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑣 = {𝑎, 𝑁}) ↔ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑎, 𝑁}))) |
| 23 | | eqeq1 2741 |
. . . . . . . . 9
⊢ (𝑥 = 𝑣 → (𝑥 = {𝑎, 𝑁} ↔ 𝑣 = {𝑎, 𝑁})) |
| 24 | 23 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑥 = 𝑣 → ((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ↔ (𝑎 ≠ 𝑁 ∧ 𝑣 = {𝑎, 𝑁}))) |
| 25 | 24 | rexbidv 3179 |
. . . . . . 7
⊢ (𝑥 = 𝑣 → (∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ↔ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑣 = {𝑎, 𝑁}))) |
| 26 | 25 | cbvrabv 3447 |
. . . . . 6
⊢ {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} = {𝑣 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑣 = {𝑎, 𝑁})} |
| 27 | 22, 26 | elrab2 3695 |
. . . . 5
⊢ ({𝑥, 𝑁} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} ↔ ({𝑥, 𝑁} ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑎, 𝑁}))) |
| 28 | 19, 27 | bitri 275 |
. . . 4
⊢ ({𝑥, 𝑁} ∈ 𝑃 ↔ ({𝑥, 𝑁} ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑎, 𝑁}))) |
| 29 | 4, 17, 28 | sylanbrc 583 |
. . 3
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → {𝑥, 𝑁} ∈ 𝑃) |
| 30 | 29 | ralrimiva 3146 |
. 2
⊢ (𝑁 ∈ 𝑉 → ∀𝑥 ∈ (𝑉 ∖ {𝑁}){𝑥, 𝑁} ∈ 𝑃) |
| 31 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}) → 𝑎 ≠ 𝑁) |
| 32 | 31 | anim2i 617 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁})) → (𝑎 ∈ 𝑉 ∧ 𝑎 ≠ 𝑁)) |
| 33 | 32 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑁 ∈ 𝑉 ∧ 𝑒 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}))) → (𝑎 ∈ 𝑉 ∧ 𝑎 ≠ 𝑁)) |
| 34 | | eldifsn 4786 |
. . . . . . . . 9
⊢ (𝑎 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑎 ∈ 𝑉 ∧ 𝑎 ≠ 𝑁)) |
| 35 | 33, 34 | sylibr 234 |
. . . . . . . 8
⊢ (((𝑁 ∈ 𝑉 ∧ 𝑒 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}))) → 𝑎 ∈ (𝑉 ∖ {𝑁})) |
| 36 | | eqeq1 2741 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = {𝑎, 𝑁} → (𝑒 = {𝑥, 𝑁} ↔ {𝑎, 𝑁} = {𝑥, 𝑁})) |
| 37 | 36 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}) → (𝑒 = {𝑥, 𝑁} ↔ {𝑎, 𝑁} = {𝑥, 𝑁})) |
| 38 | 37 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁})) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → (𝑒 = {𝑥, 𝑁} ↔ {𝑎, 𝑁} = {𝑥, 𝑁})) |
| 39 | | vex 3484 |
. . . . . . . . . . . . . 14
⊢ 𝑎 ∈ V |
| 40 | | vex 3484 |
. . . . . . . . . . . . . 14
⊢ 𝑥 ∈ V |
| 41 | 39, 40 | preqr1 4848 |
. . . . . . . . . . . . 13
⊢ ({𝑎, 𝑁} = {𝑥, 𝑁} → 𝑎 = 𝑥) |
| 42 | 41 | equcomd 2018 |
. . . . . . . . . . . 12
⊢ ({𝑎, 𝑁} = {𝑥, 𝑁} → 𝑥 = 𝑎) |
| 43 | 38, 42 | biimtrdi 253 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁})) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → (𝑒 = {𝑥, 𝑁} → 𝑥 = 𝑎)) |
| 44 | 43 | adantll 714 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ 𝑉 ∧ 𝑒 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}))) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → (𝑒 = {𝑥, 𝑁} → 𝑥 = 𝑎)) |
| 45 | 12 | equcoms 2019 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑎 → {𝑎, 𝑁} = {𝑥, 𝑁}) |
| 46 | 45 | eqeq2d 2748 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑎 → (𝑒 = {𝑎, 𝑁} ↔ 𝑒 = {𝑥, 𝑁})) |
| 47 | 46 | biimpcd 249 |
. . . . . . . . . . . . 13
⊢ (𝑒 = {𝑎, 𝑁} → (𝑥 = 𝑎 → 𝑒 = {𝑥, 𝑁})) |
| 48 | 47 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}) → (𝑥 = 𝑎 → 𝑒 = {𝑥, 𝑁})) |
| 49 | 48 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁})) → (𝑥 = 𝑎 → 𝑒 = {𝑥, 𝑁})) |
| 50 | 49 | ad2antlr 727 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ 𝑉 ∧ 𝑒 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}))) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → (𝑥 = 𝑎 → 𝑒 = {𝑥, 𝑁})) |
| 51 | 44, 50 | impbid 212 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ 𝑉 ∧ 𝑒 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}))) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → (𝑒 = {𝑥, 𝑁} ↔ 𝑥 = 𝑎)) |
| 52 | 51 | ralrimiva 3146 |
. . . . . . . 8
⊢ (((𝑁 ∈ 𝑉 ∧ 𝑒 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}))) → ∀𝑥 ∈ (𝑉 ∖ {𝑁})(𝑒 = {𝑥, 𝑁} ↔ 𝑥 = 𝑎)) |
| 53 | 35, 52 | jca 511 |
. . . . . . 7
⊢ (((𝑁 ∈ 𝑉 ∧ 𝑒 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}))) → (𝑎 ∈ (𝑉 ∖ {𝑁}) ∧ ∀𝑥 ∈ (𝑉 ∖ {𝑁})(𝑒 = {𝑥, 𝑁} ↔ 𝑥 = 𝑎))) |
| 54 | 53 | ex 412 |
. . . . . 6
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑒 ∈ 𝒫 𝑉) → ((𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁})) → (𝑎 ∈ (𝑉 ∖ {𝑁}) ∧ ∀𝑥 ∈ (𝑉 ∖ {𝑁})(𝑒 = {𝑥, 𝑁} ↔ 𝑥 = 𝑎)))) |
| 55 | 54 | reximdv2 3164 |
. . . . 5
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑒 ∈ 𝒫 𝑉) → (∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}) → ∃𝑎 ∈ (𝑉 ∖ {𝑁})∀𝑥 ∈ (𝑉 ∖ {𝑁})(𝑒 = {𝑥, 𝑁} ↔ 𝑥 = 𝑎))) |
| 56 | 55 | expimpd 453 |
. . . 4
⊢ (𝑁 ∈ 𝑉 → ((𝑒 ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁})) → ∃𝑎 ∈ (𝑉 ∖ {𝑁})∀𝑥 ∈ (𝑉 ∖ {𝑁})(𝑒 = {𝑥, 𝑁} ↔ 𝑥 = 𝑎))) |
| 57 | | eqeq1 2741 |
. . . . . . 7
⊢ (𝑥 = 𝑒 → (𝑥 = {𝑎, 𝑁} ↔ 𝑒 = {𝑎, 𝑁})) |
| 58 | 57 | anbi2d 630 |
. . . . . 6
⊢ (𝑥 = 𝑒 → ((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ↔ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}))) |
| 59 | 58 | rexbidv 3179 |
. . . . 5
⊢ (𝑥 = 𝑒 → (∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ↔ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}))) |
| 60 | 59, 18 | elrab2 3695 |
. . . 4
⊢ (𝑒 ∈ 𝑃 ↔ (𝑒 ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}))) |
| 61 | | reu6 3732 |
. . . 4
⊢
(∃!𝑥 ∈
(𝑉 ∖ {𝑁})𝑒 = {𝑥, 𝑁} ↔ ∃𝑎 ∈ (𝑉 ∖ {𝑁})∀𝑥 ∈ (𝑉 ∖ {𝑁})(𝑒 = {𝑥, 𝑁} ↔ 𝑥 = 𝑎)) |
| 62 | 56, 60, 61 | 3imtr4g 296 |
. . 3
⊢ (𝑁 ∈ 𝑉 → (𝑒 ∈ 𝑃 → ∃!𝑥 ∈ (𝑉 ∖ {𝑁})𝑒 = {𝑥, 𝑁})) |
| 63 | 62 | ralrimiv 3145 |
. 2
⊢ (𝑁 ∈ 𝑉 → ∀𝑒 ∈ 𝑃 ∃!𝑥 ∈ (𝑉 ∖ {𝑁})𝑒 = {𝑥, 𝑁}) |
| 64 | | cusgrfi.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) |
| 65 | 64 | f1ompt 7131 |
. 2
⊢ (𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃 ↔ (∀𝑥 ∈ (𝑉 ∖ {𝑁}){𝑥, 𝑁} ∈ 𝑃 ∧ ∀𝑒 ∈ 𝑃 ∃!𝑥 ∈ (𝑉 ∖ {𝑁})𝑒 = {𝑥, 𝑁})) |
| 66 | 30, 63, 65 | sylanbrc 583 |
1
⊢ (𝑁 ∈ 𝑉 → 𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) |