MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrfilem2 Structured version   Visualization version   GIF version

Theorem cusgrfilem2 28702
Description: Lemma 2 for cusgrfi 28704. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.)
Hypotheses
Ref Expression
cusgrfi.v 𝑉 = (Vtx‘𝐺)
cusgrfi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})}
cusgrfi.f 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↩ {𝑥, 𝑁})
Assertion
Ref Expression
cusgrfilem2 (𝑁 ∈ 𝑉 → 𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃)
Distinct variable groups:   𝑥,𝐺   𝑁,𝑎,𝑥   𝑉,𝑎,𝑥   𝑥,𝑃
Allowed substitution hints:   𝑃(𝑎)   𝐹(𝑥,𝑎)   𝐺(𝑎)

Proof of Theorem cusgrfilem2
Dummy variables 𝑒 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4125 . . . . 5 (𝑥 ∈ (𝑉 ∖ {𝑁}) → 𝑥 ∈ 𝑉)
2 id 22 . . . . 5 (𝑁 ∈ 𝑉 → 𝑁 ∈ 𝑉)
3 prelpwi 5446 . . . . 5 ((𝑥 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → {𝑥, 𝑁} ∈ 𝒫 𝑉)
41, 2, 3syl2anr 597 . . . 4 ((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → {𝑥, 𝑁} ∈ 𝒫 𝑉)
51adantl 482 . . . . 5 ((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → 𝑥 ∈ 𝑉)
6 eldifsni 4792 . . . . . . 7 (𝑥 ∈ (𝑉 ∖ {𝑁}) → 𝑥 ≠ 𝑁)
76adantl 482 . . . . . 6 ((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → 𝑥 ≠ 𝑁)
8 eqidd 2733 . . . . . 6 ((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → {𝑥, 𝑁} = {𝑥, 𝑁})
97, 8jca 512 . . . . 5 ((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → (𝑥 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑥, 𝑁}))
10 id 22 . . . . . 6 (𝑥 ∈ 𝑉 → 𝑥 ∈ 𝑉)
11 neeq1 3003 . . . . . . . 8 (𝑎 = 𝑥 → (𝑎 ≠ 𝑁 ↔ 𝑥 ≠ 𝑁))
12 preq1 4736 . . . . . . . . 9 (𝑎 = 𝑥 → {𝑎, 𝑁} = {𝑥, 𝑁})
1312eqeq2d 2743 . . . . . . . 8 (𝑎 = 𝑥 → ({𝑥, 𝑁} = {𝑎, 𝑁} ↔ {𝑥, 𝑁} = {𝑥, 𝑁}))
1411, 13anbi12d 631 . . . . . . 7 (𝑎 = 𝑥 → ((𝑎 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑎, 𝑁}) ↔ (𝑥 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑥, 𝑁})))
1514adantl 482 . . . . . 6 ((𝑥 ∈ 𝑉 ∧ 𝑎 = 𝑥) → ((𝑎 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑎, 𝑁}) ↔ (𝑥 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑥, 𝑁})))
1610, 15rspcedv 3605 . . . . 5 (𝑥 ∈ 𝑉 → ((𝑥 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑥, 𝑁}) → ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑎, 𝑁})))
175, 9, 16sylc 65 . . . 4 ((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑎, 𝑁}))
18 cusgrfi.p . . . . . 6 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})}
1918eleq2i 2825 . . . . 5 ({𝑥, 𝑁} ∈ 𝑃 ↔ {𝑥, 𝑁} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})})
20 eqeq1 2736 . . . . . . . 8 (𝑣 = {𝑥, 𝑁} → (𝑣 = {𝑎, 𝑁} ↔ {𝑥, 𝑁} = {𝑎, 𝑁}))
2120anbi2d 629 . . . . . . 7 (𝑣 = {𝑥, 𝑁} → ((𝑎 ≠ 𝑁 ∧ 𝑣 = {𝑎, 𝑁}) ↔ (𝑎 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑎, 𝑁})))
2221rexbidv 3178 . . . . . 6 (𝑣 = {𝑥, 𝑁} → (∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑣 = {𝑎, 𝑁}) ↔ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑎, 𝑁})))
23 eqeq1 2736 . . . . . . . . 9 (𝑥 = 𝑣 → (𝑥 = {𝑎, 𝑁} ↔ 𝑣 = {𝑎, 𝑁}))
2423anbi2d 629 . . . . . . . 8 (𝑥 = 𝑣 → ((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ↔ (𝑎 ≠ 𝑁 ∧ 𝑣 = {𝑎, 𝑁})))
2524rexbidv 3178 . . . . . . 7 (𝑥 = 𝑣 → (∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ↔ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑣 = {𝑎, 𝑁})))
2625cbvrabv 3442 . . . . . 6 {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} = {𝑣 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑣 = {𝑎, 𝑁})}
2722, 26elrab2 3685 . . . . 5 ({𝑥, 𝑁} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} ↔ ({𝑥, 𝑁} ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑎, 𝑁})))
2819, 27bitri 274 . . . 4 ({𝑥, 𝑁} ∈ 𝑃 ↔ ({𝑥, 𝑁} ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ {𝑥, 𝑁} = {𝑎, 𝑁})))
294, 17, 28sylanbrc 583 . . 3 ((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → {𝑥, 𝑁} ∈ 𝑃)
3029ralrimiva 3146 . 2 (𝑁 ∈ 𝑉 → ∀𝑥 ∈ (𝑉 ∖ {𝑁}){𝑥, 𝑁} ∈ 𝑃)
31 simpl 483 . . . . . . . . . . 11 ((𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}) → 𝑎 ≠ 𝑁)
3231anim2i 617 . . . . . . . . . 10 ((𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁})) → (𝑎 ∈ 𝑉 ∧ 𝑎 ≠ 𝑁))
3332adantl 482 . . . . . . . . 9 (((𝑁 ∈ 𝑉 ∧ 𝑒 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}))) → (𝑎 ∈ 𝑉 ∧ 𝑎 ≠ 𝑁))
34 eldifsn 4789 . . . . . . . . 9 (𝑎 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑎 ∈ 𝑉 ∧ 𝑎 ≠ 𝑁))
3533, 34sylibr 233 . . . . . . . 8 (((𝑁 ∈ 𝑉 ∧ 𝑒 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}))) → 𝑎 ∈ (𝑉 ∖ {𝑁}))
36 eqeq1 2736 . . . . . . . . . . . . . 14 (𝑒 = {𝑎, 𝑁} → (𝑒 = {𝑥, 𝑁} ↔ {𝑎, 𝑁} = {𝑥, 𝑁}))
3736adantl 482 . . . . . . . . . . . . 13 ((𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}) → (𝑒 = {𝑥, 𝑁} ↔ {𝑎, 𝑁} = {𝑥, 𝑁}))
3837ad2antlr 725 . . . . . . . . . . . 12 (((𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁})) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → (𝑒 = {𝑥, 𝑁} ↔ {𝑎, 𝑁} = {𝑥, 𝑁}))
39 vex 3478 . . . . . . . . . . . . . 14 𝑎 ∈ V
40 vex 3478 . . . . . . . . . . . . . 14 𝑥 ∈ V
4139, 40preqr1 4848 . . . . . . . . . . . . 13 ({𝑎, 𝑁} = {𝑥, 𝑁} → 𝑎 = 𝑥)
4241equcomd 2022 . . . . . . . . . . . 12 ({𝑎, 𝑁} = {𝑥, 𝑁} → 𝑥 = 𝑎)
4338, 42syl6bi 252 . . . . . . . . . . 11 (((𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁})) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → (𝑒 = {𝑥, 𝑁} → 𝑥 = 𝑎))
4443adantll 712 . . . . . . . . . 10 ((((𝑁 ∈ 𝑉 ∧ 𝑒 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}))) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → (𝑒 = {𝑥, 𝑁} → 𝑥 = 𝑎))
4512equcoms 2023 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → {𝑎, 𝑁} = {𝑥, 𝑁})
4645eqeq2d 2743 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝑒 = {𝑎, 𝑁} ↔ 𝑒 = {𝑥, 𝑁}))
4746biimpcd 248 . . . . . . . . . . . . 13 (𝑒 = {𝑎, 𝑁} → (𝑥 = 𝑎 → 𝑒 = {𝑥, 𝑁}))
4847adantl 482 . . . . . . . . . . . 12 ((𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}) → (𝑥 = 𝑎 → 𝑒 = {𝑥, 𝑁}))
4948adantl 482 . . . . . . . . . . 11 ((𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁})) → (𝑥 = 𝑎 → 𝑒 = {𝑥, 𝑁}))
5049ad2antlr 725 . . . . . . . . . 10 ((((𝑁 ∈ 𝑉 ∧ 𝑒 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}))) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → (𝑥 = 𝑎 → 𝑒 = {𝑥, 𝑁}))
5144, 50impbid 211 . . . . . . . . 9 ((((𝑁 ∈ 𝑉 ∧ 𝑒 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}))) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → (𝑒 = {𝑥, 𝑁} ↔ 𝑥 = 𝑎))
5251ralrimiva 3146 . . . . . . . 8 (((𝑁 ∈ 𝑉 ∧ 𝑒 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}))) → ∀𝑥 ∈ (𝑉 ∖ {𝑁})(𝑒 = {𝑥, 𝑁} ↔ 𝑥 = 𝑎))
5335, 52jca 512 . . . . . . 7 (((𝑁 ∈ 𝑉 ∧ 𝑒 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}))) → (𝑎 ∈ (𝑉 ∖ {𝑁}) ∧ ∀𝑥 ∈ (𝑉 ∖ {𝑁})(𝑒 = {𝑥, 𝑁} ↔ 𝑥 = 𝑎)))
5453ex 413 . . . . . 6 ((𝑁 ∈ 𝑉 ∧ 𝑒 ∈ 𝒫 𝑉) → ((𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁})) → (𝑎 ∈ (𝑉 ∖ {𝑁}) ∧ ∀𝑥 ∈ (𝑉 ∖ {𝑁})(𝑒 = {𝑥, 𝑁} ↔ 𝑥 = 𝑎))))
5554reximdv2 3164 . . . . 5 ((𝑁 ∈ 𝑉 ∧ 𝑒 ∈ 𝒫 𝑉) → (∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁}) → ∃𝑎 ∈ (𝑉 ∖ {𝑁})∀𝑥 ∈ (𝑉 ∖ {𝑁})(𝑒 = {𝑥, 𝑁} ↔ 𝑥 = 𝑎)))
5655expimpd 454 . . . 4 (𝑁 ∈ 𝑉 → ((𝑒 ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁})) → ∃𝑎 ∈ (𝑉 ∖ {𝑁})∀𝑥 ∈ (𝑉 ∖ {𝑁})(𝑒 = {𝑥, 𝑁} ↔ 𝑥 = 𝑎)))
57 eqeq1 2736 . . . . . . 7 (𝑥 = 𝑒 → (𝑥 = {𝑎, 𝑁} ↔ 𝑒 = {𝑎, 𝑁}))
5857anbi2d 629 . . . . . 6 (𝑥 = 𝑒 → ((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ↔ (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁})))
5958rexbidv 3178 . . . . 5 (𝑥 = 𝑒 → (∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ↔ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁})))
6059, 18elrab2 3685 . . . 4 (𝑒 ∈ 𝑃 ↔ (𝑒 ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑒 = {𝑎, 𝑁})))
61 reu6 3721 . . . 4 (∃!𝑥 ∈ (𝑉 ∖ {𝑁})𝑒 = {𝑥, 𝑁} ↔ ∃𝑎 ∈ (𝑉 ∖ {𝑁})∀𝑥 ∈ (𝑉 ∖ {𝑁})(𝑒 = {𝑥, 𝑁} ↔ 𝑥 = 𝑎))
6256, 60, 613imtr4g 295 . . 3 (𝑁 ∈ 𝑉 → (𝑒 ∈ 𝑃 → ∃!𝑥 ∈ (𝑉 ∖ {𝑁})𝑒 = {𝑥, 𝑁}))
6362ralrimiv 3145 . 2 (𝑁 ∈ 𝑉 → ∀𝑒 ∈ 𝑃 ∃!𝑥 ∈ (𝑉 ∖ {𝑁})𝑒 = {𝑥, 𝑁})
64 cusgrfi.f . . 3 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↩ {𝑥, 𝑁})
6564f1ompt 7107 . 2 (𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃 ↔ (∀𝑥 ∈ (𝑉 ∖ {𝑁}){𝑥, 𝑁} ∈ 𝑃 ∧ ∀𝑒 ∈ 𝑃 ∃!𝑥 ∈ (𝑉 ∖ {𝑁})𝑒 = {𝑥, 𝑁}))
6630, 63, 65sylanbrc 583 1 (𝑁 ∈ 𝑉 → 𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃)
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   ≠ wne 2940  âˆ€wral 3061  âˆƒwrex 3070  âˆƒ!wreu 3374  {crab 3432   ∖ cdif 3944  ð’« cpw 4601  {csn 4627  {cpr 4629   ↩ cmpt 5230  â€“1-1-onto→wf1o 6539  â€˜cfv 6540  Vtxcvtx 28245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547
This theorem is referenced by:  cusgrfilem3  28703
  Copyright terms: Public domain W3C validator