Step | Hyp | Ref
| Expression |
1 | | eldifi 4125 |
. . . . 5
⢠(ð¥ â (ð â {ð}) â ð¥ â ð) |
2 | | id 22 |
. . . . 5
⢠(ð â ð â ð â ð) |
3 | | prelpwi 5446 |
. . . . 5
⢠((ð¥ â ð ⧠ð â ð) â {ð¥, ð} â ð« ð) |
4 | 1, 2, 3 | syl2anr 597 |
. . . 4
⢠((ð â ð ⧠ð¥ â (ð â {ð})) â {ð¥, ð} â ð« ð) |
5 | 1 | adantl 482 |
. . . . 5
⢠((ð â ð ⧠ð¥ â (ð â {ð})) â ð¥ â ð) |
6 | | eldifsni 4792 |
. . . . . . 7
⢠(ð¥ â (ð â {ð}) â ð¥ â ð) |
7 | 6 | adantl 482 |
. . . . . 6
⢠((ð â ð ⧠ð¥ â (ð â {ð})) â ð¥ â ð) |
8 | | eqidd 2733 |
. . . . . 6
⢠((ð â ð ⧠ð¥ â (ð â {ð})) â {ð¥, ð} = {ð¥, ð}) |
9 | 7, 8 | jca 512 |
. . . . 5
⢠((ð â ð ⧠ð¥ â (ð â {ð})) â (ð¥ â ð ⧠{ð¥, ð} = {ð¥, ð})) |
10 | | id 22 |
. . . . . 6
⢠(ð¥ â ð â ð¥ â ð) |
11 | | neeq1 3003 |
. . . . . . . 8
⢠(ð = ð¥ â (ð â ð â ð¥ â ð)) |
12 | | preq1 4736 |
. . . . . . . . 9
⢠(ð = ð¥ â {ð, ð} = {ð¥, ð}) |
13 | 12 | eqeq2d 2743 |
. . . . . . . 8
⢠(ð = ð¥ â ({ð¥, ð} = {ð, ð} â {ð¥, ð} = {ð¥, ð})) |
14 | 11, 13 | anbi12d 631 |
. . . . . . 7
⢠(ð = ð¥ â ((ð â ð ⧠{ð¥, ð} = {ð, ð}) â (ð¥ â ð ⧠{ð¥, ð} = {ð¥, ð}))) |
15 | 14 | adantl 482 |
. . . . . 6
⢠((ð¥ â ð ⧠ð = ð¥) â ((ð â ð ⧠{ð¥, ð} = {ð, ð}) â (ð¥ â ð ⧠{ð¥, ð} = {ð¥, ð}))) |
16 | 10, 15 | rspcedv 3605 |
. . . . 5
⢠(ð¥ â ð â ((ð¥ â ð ⧠{ð¥, ð} = {ð¥, ð}) â âð â ð (ð â ð ⧠{ð¥, ð} = {ð, ð}))) |
17 | 5, 9, 16 | sylc 65 |
. . . 4
⢠((ð â ð ⧠ð¥ â (ð â {ð})) â âð â ð (ð â ð ⧠{ð¥, ð} = {ð, ð})) |
18 | | cusgrfi.p |
. . . . . 6
⢠ð = {ð¥ â ð« ð ⣠âð â ð (ð â ð ⧠ð¥ = {ð, ð})} |
19 | 18 | eleq2i 2825 |
. . . . 5
⢠({ð¥, ð} â ð â {ð¥, ð} â {ð¥ â ð« ð ⣠âð â ð (ð â ð ⧠ð¥ = {ð, ð})}) |
20 | | eqeq1 2736 |
. . . . . . . 8
⢠(ð£ = {ð¥, ð} â (ð£ = {ð, ð} â {ð¥, ð} = {ð, ð})) |
21 | 20 | anbi2d 629 |
. . . . . . 7
⢠(ð£ = {ð¥, ð} â ((ð â ð ⧠ð£ = {ð, ð}) â (ð â ð ⧠{ð¥, ð} = {ð, ð}))) |
22 | 21 | rexbidv 3178 |
. . . . . 6
⢠(ð£ = {ð¥, ð} â (âð â ð (ð â ð ⧠ð£ = {ð, ð}) â âð â ð (ð â ð ⧠{ð¥, ð} = {ð, ð}))) |
23 | | eqeq1 2736 |
. . . . . . . . 9
⢠(ð¥ = ð£ â (ð¥ = {ð, ð} â ð£ = {ð, ð})) |
24 | 23 | anbi2d 629 |
. . . . . . . 8
⢠(ð¥ = ð£ â ((ð â ð ⧠ð¥ = {ð, ð}) â (ð â ð ⧠ð£ = {ð, ð}))) |
25 | 24 | rexbidv 3178 |
. . . . . . 7
⢠(ð¥ = ð£ â (âð â ð (ð â ð ⧠ð¥ = {ð, ð}) â âð â ð (ð â ð ⧠ð£ = {ð, ð}))) |
26 | 25 | cbvrabv 3442 |
. . . . . 6
⢠{ð¥ â ð« ð ⣠âð â ð (ð â ð ⧠ð¥ = {ð, ð})} = {ð£ â ð« ð ⣠âð â ð (ð â ð ⧠ð£ = {ð, ð})} |
27 | 22, 26 | elrab2 3685 |
. . . . 5
⢠({ð¥, ð} â {ð¥ â ð« ð ⣠âð â ð (ð â ð ⧠ð¥ = {ð, ð})} â ({ð¥, ð} â ð« ð ⧠âð â ð (ð â ð ⧠{ð¥, ð} = {ð, ð}))) |
28 | 19, 27 | bitri 274 |
. . . 4
⢠({ð¥, ð} â ð â ({ð¥, ð} â ð« ð ⧠âð â ð (ð â ð ⧠{ð¥, ð} = {ð, ð}))) |
29 | 4, 17, 28 | sylanbrc 583 |
. . 3
⢠((ð â ð ⧠ð¥ â (ð â {ð})) â {ð¥, ð} â ð) |
30 | 29 | ralrimiva 3146 |
. 2
⢠(ð â ð â âð¥ â (ð â {ð}){ð¥, ð} â ð) |
31 | | simpl 483 |
. . . . . . . . . . 11
⢠((ð â ð ⧠ð = {ð, ð}) â ð â ð) |
32 | 31 | anim2i 617 |
. . . . . . . . . 10
⢠((ð â ð ⧠(ð â ð ⧠ð = {ð, ð})) â (ð â ð ⧠ð â ð)) |
33 | 32 | adantl 482 |
. . . . . . . . 9
⢠(((ð â ð ⧠ð â ð« ð) ⧠(ð â ð ⧠(ð â ð ⧠ð = {ð, ð}))) â (ð â ð ⧠ð â ð)) |
34 | | eldifsn 4789 |
. . . . . . . . 9
⢠(ð â (ð â {ð}) â (ð â ð ⧠ð â ð)) |
35 | 33, 34 | sylibr 233 |
. . . . . . . 8
⢠(((ð â ð ⧠ð â ð« ð) ⧠(ð â ð ⧠(ð â ð ⧠ð = {ð, ð}))) â ð â (ð â {ð})) |
36 | | eqeq1 2736 |
. . . . . . . . . . . . . 14
⢠(ð = {ð, ð} â (ð = {ð¥, ð} â {ð, ð} = {ð¥, ð})) |
37 | 36 | adantl 482 |
. . . . . . . . . . . . 13
⢠((ð â ð ⧠ð = {ð, ð}) â (ð = {ð¥, ð} â {ð, ð} = {ð¥, ð})) |
38 | 37 | ad2antlr 725 |
. . . . . . . . . . . 12
⢠(((ð â ð ⧠(ð â ð ⧠ð = {ð, ð})) ⧠ð¥ â (ð â {ð})) â (ð = {ð¥, ð} â {ð, ð} = {ð¥, ð})) |
39 | | vex 3478 |
. . . . . . . . . . . . . 14
⢠ð â V |
40 | | vex 3478 |
. . . . . . . . . . . . . 14
⢠ð¥ â V |
41 | 39, 40 | preqr1 4848 |
. . . . . . . . . . . . 13
⢠({ð, ð} = {ð¥, ð} â ð = ð¥) |
42 | 41 | equcomd 2022 |
. . . . . . . . . . . 12
⢠({ð, ð} = {ð¥, ð} â ð¥ = ð) |
43 | 38, 42 | syl6bi 252 |
. . . . . . . . . . 11
⢠(((ð â ð ⧠(ð â ð ⧠ð = {ð, ð})) ⧠ð¥ â (ð â {ð})) â (ð = {ð¥, ð} â ð¥ = ð)) |
44 | 43 | adantll 712 |
. . . . . . . . . 10
⢠((((ð â ð ⧠ð â ð« ð) ⧠(ð â ð ⧠(ð â ð ⧠ð = {ð, ð}))) ⧠ð¥ â (ð â {ð})) â (ð = {ð¥, ð} â ð¥ = ð)) |
45 | 12 | equcoms 2023 |
. . . . . . . . . . . . . . 15
⢠(ð¥ = ð â {ð, ð} = {ð¥, ð}) |
46 | 45 | eqeq2d 2743 |
. . . . . . . . . . . . . 14
⢠(ð¥ = ð â (ð = {ð, ð} â ð = {ð¥, ð})) |
47 | 46 | biimpcd 248 |
. . . . . . . . . . . . 13
⢠(ð = {ð, ð} â (ð¥ = ð â ð = {ð¥, ð})) |
48 | 47 | adantl 482 |
. . . . . . . . . . . 12
⢠((ð â ð ⧠ð = {ð, ð}) â (ð¥ = ð â ð = {ð¥, ð})) |
49 | 48 | adantl 482 |
. . . . . . . . . . 11
⢠((ð â ð ⧠(ð â ð ⧠ð = {ð, ð})) â (ð¥ = ð â ð = {ð¥, ð})) |
50 | 49 | ad2antlr 725 |
. . . . . . . . . 10
⢠((((ð â ð ⧠ð â ð« ð) ⧠(ð â ð ⧠(ð â ð ⧠ð = {ð, ð}))) ⧠ð¥ â (ð â {ð})) â (ð¥ = ð â ð = {ð¥, ð})) |
51 | 44, 50 | impbid 211 |
. . . . . . . . 9
⢠((((ð â ð ⧠ð â ð« ð) ⧠(ð â ð ⧠(ð â ð ⧠ð = {ð, ð}))) ⧠ð¥ â (ð â {ð})) â (ð = {ð¥, ð} â ð¥ = ð)) |
52 | 51 | ralrimiva 3146 |
. . . . . . . 8
⢠(((ð â ð ⧠ð â ð« ð) ⧠(ð â ð ⧠(ð â ð ⧠ð = {ð, ð}))) â âð¥ â (ð â {ð})(ð = {ð¥, ð} â ð¥ = ð)) |
53 | 35, 52 | jca 512 |
. . . . . . 7
⢠(((ð â ð ⧠ð â ð« ð) ⧠(ð â ð ⧠(ð â ð ⧠ð = {ð, ð}))) â (ð â (ð â {ð}) ⧠âð¥ â (ð â {ð})(ð = {ð¥, ð} â ð¥ = ð))) |
54 | 53 | ex 413 |
. . . . . 6
⢠((ð â ð ⧠ð â ð« ð) â ((ð â ð ⧠(ð â ð ⧠ð = {ð, ð})) â (ð â (ð â {ð}) ⧠âð¥ â (ð â {ð})(ð = {ð¥, ð} â ð¥ = ð)))) |
55 | 54 | reximdv2 3164 |
. . . . 5
⢠((ð â ð ⧠ð â ð« ð) â (âð â ð (ð â ð ⧠ð = {ð, ð}) â âð â (ð â {ð})âð¥ â (ð â {ð})(ð = {ð¥, ð} â ð¥ = ð))) |
56 | 55 | expimpd 454 |
. . . 4
⢠(ð â ð â ((ð â ð« ð ⧠âð â ð (ð â ð ⧠ð = {ð, ð})) â âð â (ð â {ð})âð¥ â (ð â {ð})(ð = {ð¥, ð} â ð¥ = ð))) |
57 | | eqeq1 2736 |
. . . . . . 7
⢠(ð¥ = ð â (ð¥ = {ð, ð} â ð = {ð, ð})) |
58 | 57 | anbi2d 629 |
. . . . . 6
⢠(ð¥ = ð â ((ð â ð ⧠ð¥ = {ð, ð}) â (ð â ð ⧠ð = {ð, ð}))) |
59 | 58 | rexbidv 3178 |
. . . . 5
⢠(ð¥ = ð â (âð â ð (ð â ð ⧠ð¥ = {ð, ð}) â âð â ð (ð â ð ⧠ð = {ð, ð}))) |
60 | 59, 18 | elrab2 3685 |
. . . 4
⢠(ð â ð â (ð â ð« ð ⧠âð â ð (ð â ð ⧠ð = {ð, ð}))) |
61 | | reu6 3721 |
. . . 4
â¢
(â!ð¥ â
(ð â {ð})ð = {ð¥, ð} â âð â (ð â {ð})âð¥ â (ð â {ð})(ð = {ð¥, ð} â ð¥ = ð)) |
62 | 56, 60, 61 | 3imtr4g 295 |
. . 3
⢠(ð â ð â (ð â ð â â!ð¥ â (ð â {ð})ð = {ð¥, ð})) |
63 | 62 | ralrimiv 3145 |
. 2
⢠(ð â ð â âð â ð â!ð¥ â (ð â {ð})ð = {ð¥, ð}) |
64 | | cusgrfi.f |
. . 3
⢠ð¹ = (ð¥ â (ð â {ð}) ⊠{ð¥, ð}) |
65 | 64 | f1ompt 7107 |
. 2
⢠(ð¹:(ð â {ð})â1-1-ontoâð â (âð¥ â (ð â {ð}){ð¥, ð} â ð ⧠âð â ð â!ð¥ â (ð â {ð})ð = {ð¥, ð})) |
66 | 30, 63, 65 | sylanbrc 583 |
1
⢠(ð â ð â ð¹:(ð â {ð})â1-1-ontoâð) |