MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2wlkneq Structured version   Visualization version   GIF version

Theorem usgr2wlkneq 26880
Description: The vertices and edges are pairwise different in a walk of length 2 in a simple graph. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 26-Jan-2021.)
Assertion
Ref Expression
usgr2wlkneq (((𝐺 ∈ USGraph ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))

Proof of Theorem usgr2wlkneq
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 usgrupgr 26292 . . . 4 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
2 eqid 2806 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2806 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3upgriswlk 26765 . . . 4 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
51, 4syl 17 . . 3 (𝐺 ∈ USGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
6 2wlklem 26791 . . . . . . . . . . . 12 (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
7 simplll 782 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → 𝐺 ∈ USGraph)
8 fvex 6421 . . . . . . . . . . . . . . 15 (𝑃‘0) ∈ V
93usgrnloopv 26307 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ (𝑃‘0) ∈ V) → (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → (𝑃‘0) ≠ (𝑃‘1)))
107, 8, 9sylancl 576 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → (𝑃‘0) ≠ (𝑃‘1)))
11 fvex 6421 . . . . . . . . . . . . . . 15 (𝑃‘1) ∈ V
123usgrnloopv 26307 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ (𝑃‘1) ∈ V) → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝑃‘1) ≠ (𝑃‘2)))
137, 11, 12sylancl 576 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝑃‘1) ≠ (𝑃‘2)))
1410, 13anim12d 598 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))))
15 fveqeq2 6417 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹‘0) = (𝐹‘1) → (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ↔ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)}))
16 eqtr2 2826 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → {(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)})
17 prcom 4458 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 {(𝑃‘1), (𝑃‘2)} = {(𝑃‘2), (𝑃‘1)}
1817eqeq2i 2818 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)} ↔ {(𝑃‘0), (𝑃‘1)} = {(𝑃‘2), (𝑃‘1)})
19 fvex 6421 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃‘2) ∈ V
208, 19preqr1 4567 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({(𝑃‘0), (𝑃‘1)} = {(𝑃‘2), (𝑃‘1)} → (𝑃‘0) = (𝑃‘2))
2118, 20sylbi 208 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ({(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)} → (𝑃‘0) = (𝑃‘2))
2216, 21syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) = (𝑃‘2))
2322ex 399 . . . . . . . . . . . . . . . . . . . . . . . 24 (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)} → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝑃‘0) = (𝑃‘2)))
2415, 23syl6bi 244 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹‘0) = (𝐹‘1) → (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝑃‘0) = (𝑃‘2))))
2524impd 398 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹‘0) = (𝐹‘1) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) = (𝑃‘2)))
2625com12 32 . . . . . . . . . . . . . . . . . . . . 21 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((𝐹‘0) = (𝐹‘1) → (𝑃‘0) = (𝑃‘2)))
2726necon3d 2999 . . . . . . . . . . . . . . . . . . . 20 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((𝑃‘0) ≠ (𝑃‘2) → (𝐹‘0) ≠ (𝐹‘1)))
2827com12 32 . . . . . . . . . . . . . . . . . . 19 ((𝑃‘0) ≠ (𝑃‘2) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐹‘0) ≠ (𝐹‘1)))
2928adantr 468 . . . . . . . . . . . . . . . . . 18 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐹‘0) ≠ (𝐹‘1)))
30 simpl 470 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → (𝑃‘0) ≠ (𝑃‘1))
3130adantl 469 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → (𝑃‘0) ≠ (𝑃‘1))
32 simpl 470 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → (𝑃‘0) ≠ (𝑃‘2))
33 simprr 780 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → (𝑃‘1) ≠ (𝑃‘2))
3431, 32, 333jca 1151 . . . . . . . . . . . . . . . . . 18 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)))
3529, 34jctild 517 . . . . . . . . . . . . . . . . 17 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))
3635ex 399 . . . . . . . . . . . . . . . 16 ((𝑃‘0) ≠ (𝑃‘2) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
3736com23 86 . . . . . . . . . . . . . . 15 ((𝑃‘0) ≠ (𝑃‘2) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
3837adantl 469 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
3938adantr 468 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
4014, 39mpdd 43 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))
416, 40syl5bi 233 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))
4241ex 399 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (𝑃:(0...2)⟶(Vtx‘𝐺) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
4342com23 86 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
4443ex 399 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((𝑃‘0) ≠ (𝑃‘2) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))))
45 fveq2 6408 . . . . . . . . . 10 ((♯‘𝐹) = 2 → (𝑃‘(♯‘𝐹)) = (𝑃‘2))
4645neeq2d 3038 . . . . . . . . 9 ((♯‘𝐹) = 2 → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘2)))
47 oveq2 6882 . . . . . . . . . . . 12 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = (0..^2))
48 fzo0to2pr 12777 . . . . . . . . . . . 12 (0..^2) = {0, 1}
4947, 48syl6eq 2856 . . . . . . . . . . 11 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = {0, 1})
5049raleqdv 3333 . . . . . . . . . 10 ((♯‘𝐹) = 2 → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
51 oveq2 6882 . . . . . . . . . . . 12 ((♯‘𝐹) = 2 → (0...(♯‘𝐹)) = (0...2))
5251feq2d 6242 . . . . . . . . . . 11 ((♯‘𝐹) = 2 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ↔ 𝑃:(0...2)⟶(Vtx‘𝐺)))
5352imbi1d 332 . . . . . . . . . 10 ((♯‘𝐹) = 2 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))) ↔ (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
5450, 53imbi12d 335 . . . . . . . . 9 ((♯‘𝐹) = 2 → ((∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))) ↔ (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))))
5546, 54imbi12d 335 . . . . . . . 8 ((♯‘𝐹) = 2 → (((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))) ↔ ((𝑃‘0) ≠ (𝑃‘2) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))))
5644, 55syl5ibrcom 238 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((♯‘𝐹) = 2 → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))))
5756impd 398 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))))
5857com24 95 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))))
5958ex 399 . . . 4 (𝐺 ∈ USGraph → (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))))
60593impd 1450 . . 3 (𝐺 ∈ USGraph → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
615, 60sylbid 231 . 2 (𝐺 ∈ USGraph → (𝐹(Walks‘𝐺)𝑃 → (((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
6261imp31 406 1 (((𝐺 ∈ USGraph ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2156  wne 2978  wral 3096  Vcvv 3391  {cpr 4372   class class class wbr 4844  dom cdm 5311  wf 6097  cfv 6101  (class class class)co 6874  0cc0 10221  1c1 10222   + caddc 10224  2c2 11356  ...cfz 12549  ..^cfzo 12689  chash 13337  Word cword 13502  Vtxcvtx 26088  iEdgciedg 26089  UPGraphcupgr 26189  USGraphcusgr 26259  Walkscwlks 26720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-ifp 1079  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-1st 7398  df-2nd 7399  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-1o 7796  df-2o 7797  df-oadd 7800  df-er 7979  df-map 8094  df-pm 8095  df-en 8193  df-dom 8194  df-sdom 8195  df-fin 8196  df-card 9048  df-cda 9275  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-nn 11306  df-2 11364  df-n0 11560  df-xnn0 11630  df-z 11644  df-uz 11905  df-fz 12550  df-fzo 12690  df-hash 13338  df-word 13510  df-edg 26154  df-uhgr 26167  df-upgr 26191  df-umgr 26192  df-uspgr 26260  df-usgr 26261  df-wlks 26723
This theorem is referenced by:  usgr2wlkspthlem1  26881  usgr2wlkspthlem2  26882
  Copyright terms: Public domain W3C validator