MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2wlkneq Structured version   Visualization version   GIF version

Theorem usgr2wlkneq 28025
Description: The vertices and edges are pairwise different in a walk of length 2 in a simple graph. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 26-Jan-2021.)
Assertion
Ref Expression
usgr2wlkneq (((𝐺 ∈ USGraph ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))

Proof of Theorem usgr2wlkneq
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 usgrupgr 27455 . . . 4 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
2 eqid 2738 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2738 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3upgriswlk 27910 . . . 4 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
51, 4syl 17 . . 3 (𝐺 ∈ USGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
6 2wlklem 27937 . . . . . . . . . . . 12 (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
7 simplll 771 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → 𝐺 ∈ USGraph)
8 fvex 6769 . . . . . . . . . . . . . . 15 (𝑃‘0) ∈ V
93usgrnloopv 27470 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ (𝑃‘0) ∈ V) → (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → (𝑃‘0) ≠ (𝑃‘1)))
107, 8, 9sylancl 585 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → (𝑃‘0) ≠ (𝑃‘1)))
11 fvex 6769 . . . . . . . . . . . . . . 15 (𝑃‘1) ∈ V
123usgrnloopv 27470 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ (𝑃‘1) ∈ V) → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝑃‘1) ≠ (𝑃‘2)))
137, 11, 12sylancl 585 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝑃‘1) ≠ (𝑃‘2)))
1410, 13anim12d 608 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))))
15 fveqeq2 6765 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹‘0) = (𝐹‘1) → (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ↔ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)}))
16 eqtr2 2762 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → {(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)})
17 prcom 4665 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 {(𝑃‘1), (𝑃‘2)} = {(𝑃‘2), (𝑃‘1)}
1817eqeq2i 2751 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)} ↔ {(𝑃‘0), (𝑃‘1)} = {(𝑃‘2), (𝑃‘1)})
19 fvex 6769 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃‘2) ∈ V
208, 19preqr1 4776 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({(𝑃‘0), (𝑃‘1)} = {(𝑃‘2), (𝑃‘1)} → (𝑃‘0) = (𝑃‘2))
2118, 20sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ({(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)} → (𝑃‘0) = (𝑃‘2))
2216, 21syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) = (𝑃‘2))
2322ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)} → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝑃‘0) = (𝑃‘2)))
2415, 23syl6bi 252 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹‘0) = (𝐹‘1) → (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝑃‘0) = (𝑃‘2))))
2524impd 410 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹‘0) = (𝐹‘1) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) = (𝑃‘2)))
2625com12 32 . . . . . . . . . . . . . . . . . . . . 21 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((𝐹‘0) = (𝐹‘1) → (𝑃‘0) = (𝑃‘2)))
2726necon3d 2963 . . . . . . . . . . . . . . . . . . . 20 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((𝑃‘0) ≠ (𝑃‘2) → (𝐹‘0) ≠ (𝐹‘1)))
2827com12 32 . . . . . . . . . . . . . . . . . . 19 ((𝑃‘0) ≠ (𝑃‘2) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐹‘0) ≠ (𝐹‘1)))
2928adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐹‘0) ≠ (𝐹‘1)))
30 simpl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → (𝑃‘0) ≠ (𝑃‘1))
3130adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → (𝑃‘0) ≠ (𝑃‘1))
32 simpl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → (𝑃‘0) ≠ (𝑃‘2))
33 simprr 769 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → (𝑃‘1) ≠ (𝑃‘2))
3431, 32, 333jca 1126 . . . . . . . . . . . . . . . . . 18 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)))
3529, 34jctild 525 . . . . . . . . . . . . . . . . 17 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))
3635ex 412 . . . . . . . . . . . . . . . 16 ((𝑃‘0) ≠ (𝑃‘2) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
3736com23 86 . . . . . . . . . . . . . . 15 ((𝑃‘0) ≠ (𝑃‘2) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
3837adantl 481 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
3938adantr 480 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
4014, 39mpdd 43 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))
416, 40syl5bi 241 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))
4241ex 412 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (𝑃:(0...2)⟶(Vtx‘𝐺) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
4342com23 86 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
4443ex 412 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((𝑃‘0) ≠ (𝑃‘2) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))))
45 fveq2 6756 . . . . . . . . . 10 ((♯‘𝐹) = 2 → (𝑃‘(♯‘𝐹)) = (𝑃‘2))
4645neeq2d 3003 . . . . . . . . 9 ((♯‘𝐹) = 2 → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘2)))
47 oveq2 7263 . . . . . . . . . . . 12 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = (0..^2))
48 fzo0to2pr 13400 . . . . . . . . . . . 12 (0..^2) = {0, 1}
4947, 48eqtrdi 2795 . . . . . . . . . . 11 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = {0, 1})
5049raleqdv 3339 . . . . . . . . . 10 ((♯‘𝐹) = 2 → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
51 oveq2 7263 . . . . . . . . . . . 12 ((♯‘𝐹) = 2 → (0...(♯‘𝐹)) = (0...2))
5251feq2d 6570 . . . . . . . . . . 11 ((♯‘𝐹) = 2 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ↔ 𝑃:(0...2)⟶(Vtx‘𝐺)))
5352imbi1d 341 . . . . . . . . . 10 ((♯‘𝐹) = 2 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))) ↔ (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
5450, 53imbi12d 344 . . . . . . . . 9 ((♯‘𝐹) = 2 → ((∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))) ↔ (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))))
5546, 54imbi12d 344 . . . . . . . 8 ((♯‘𝐹) = 2 → (((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))) ↔ ((𝑃‘0) ≠ (𝑃‘2) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))))
5644, 55syl5ibrcom 246 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((♯‘𝐹) = 2 → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))))
5756impd 410 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))))
5857com24 95 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))))
5958ex 412 . . . 4 (𝐺 ∈ USGraph → (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))))
60593impd 1346 . . 3 (𝐺 ∈ USGraph → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
615, 60sylbid 239 . 2 (𝐺 ∈ USGraph → (𝐹(Walks‘𝐺)𝑃 → (((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
6261imp31 417 1 (((𝐺 ∈ USGraph ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  {cpr 4560   class class class wbr 5070  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  2c2 11958  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145  Vtxcvtx 27269  iEdgciedg 27270  UPGraphcupgr 27353  USGraphcusgr 27422  Walkscwlks 27866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-edg 27321  df-uhgr 27331  df-upgr 27355  df-umgr 27356  df-uspgr 27423  df-usgr 27424  df-wlks 27869
This theorem is referenced by:  usgr2wlkspthlem1  28026  usgr2wlkspthlem2  28027
  Copyright terms: Public domain W3C validator