MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2wlkneq Structured version   Visualization version   GIF version

Theorem usgr2wlkneq 27815
Description: The vertices and edges are pairwise different in a walk of length 2 in a simple graph. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 26-Jan-2021.)
Assertion
Ref Expression
usgr2wlkneq (((𝐺 ∈ USGraph ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))

Proof of Theorem usgr2wlkneq
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 usgrupgr 27245 . . . 4 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
2 eqid 2734 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2734 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3upgriswlk 27700 . . . 4 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
51, 4syl 17 . . 3 (𝐺 ∈ USGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
6 2wlklem 27727 . . . . . . . . . . . 12 (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
7 simplll 775 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → 𝐺 ∈ USGraph)
8 fvex 6719 . . . . . . . . . . . . . . 15 (𝑃‘0) ∈ V
93usgrnloopv 27260 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ (𝑃‘0) ∈ V) → (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → (𝑃‘0) ≠ (𝑃‘1)))
107, 8, 9sylancl 589 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → (𝑃‘0) ≠ (𝑃‘1)))
11 fvex 6719 . . . . . . . . . . . . . . 15 (𝑃‘1) ∈ V
123usgrnloopv 27260 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ (𝑃‘1) ∈ V) → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝑃‘1) ≠ (𝑃‘2)))
137, 11, 12sylancl 589 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝑃‘1) ≠ (𝑃‘2)))
1410, 13anim12d 612 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))))
15 fveqeq2 6715 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹‘0) = (𝐹‘1) → (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ↔ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)}))
16 eqtr2 2758 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → {(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)})
17 prcom 4638 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 {(𝑃‘1), (𝑃‘2)} = {(𝑃‘2), (𝑃‘1)}
1817eqeq2i 2747 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)} ↔ {(𝑃‘0), (𝑃‘1)} = {(𝑃‘2), (𝑃‘1)})
19 fvex 6719 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃‘2) ∈ V
208, 19preqr1 4749 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({(𝑃‘0), (𝑃‘1)} = {(𝑃‘2), (𝑃‘1)} → (𝑃‘0) = (𝑃‘2))
2118, 20sylbi 220 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ({(𝑃‘0), (𝑃‘1)} = {(𝑃‘1), (𝑃‘2)} → (𝑃‘0) = (𝑃‘2))
2216, 21syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) = (𝑃‘2))
2322ex 416 . . . . . . . . . . . . . . . . . . . . . . . 24 (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘0), (𝑃‘1)} → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝑃‘0) = (𝑃‘2)))
2415, 23syl6bi 256 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹‘0) = (𝐹‘1) → (((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} → (((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)} → (𝑃‘0) = (𝑃‘2))))
2524impd 414 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹‘0) = (𝐹‘1) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝑃‘0) = (𝑃‘2)))
2625com12 32 . . . . . . . . . . . . . . . . . . . . 21 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((𝐹‘0) = (𝐹‘1) → (𝑃‘0) = (𝑃‘2)))
2726necon3d 2956 . . . . . . . . . . . . . . . . . . . 20 ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → ((𝑃‘0) ≠ (𝑃‘2) → (𝐹‘0) ≠ (𝐹‘1)))
2827com12 32 . . . . . . . . . . . . . . . . . . 19 ((𝑃‘0) ≠ (𝑃‘2) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐹‘0) ≠ (𝐹‘1)))
2928adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (𝐹‘0) ≠ (𝐹‘1)))
30 simpl 486 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → (𝑃‘0) ≠ (𝑃‘1))
3130adantl 485 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → (𝑃‘0) ≠ (𝑃‘1))
32 simpl 486 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → (𝑃‘0) ≠ (𝑃‘2))
33 simprr 773 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → (𝑃‘1) ≠ (𝑃‘2))
3431, 32, 333jca 1130 . . . . . . . . . . . . . . . . . 18 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)))
3529, 34jctild 529 . . . . . . . . . . . . . . . . 17 (((𝑃‘0) ≠ (𝑃‘2) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))
3635ex 416 . . . . . . . . . . . . . . . 16 ((𝑃‘0) ≠ (𝑃‘2) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
3736com23 86 . . . . . . . . . . . . . . 15 ((𝑃‘0) ≠ (𝑃‘2) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
3837adantl 485 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
3938adantr 484 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
4014, 39mpdd 43 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → ((((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ ((iEdg‘𝐺)‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))
416, 40syl5bi 245 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) ∧ 𝑃:(0...2)⟶(Vtx‘𝐺)) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))
4241ex 416 . . . . . . . . . 10 (((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (𝑃:(0...2)⟶(Vtx‘𝐺) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
4342com23 86 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
4443ex 416 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((𝑃‘0) ≠ (𝑃‘2) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))))
45 fveq2 6706 . . . . . . . . . 10 ((♯‘𝐹) = 2 → (𝑃‘(♯‘𝐹)) = (𝑃‘2))
4645neeq2d 2995 . . . . . . . . 9 ((♯‘𝐹) = 2 → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘2)))
47 oveq2 7210 . . . . . . . . . . . 12 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = (0..^2))
48 fzo0to2pr 13310 . . . . . . . . . . . 12 (0..^2) = {0, 1}
4947, 48eqtrdi 2790 . . . . . . . . . . 11 ((♯‘𝐹) = 2 → (0..^(♯‘𝐹)) = {0, 1})
5049raleqdv 3318 . . . . . . . . . 10 ((♯‘𝐹) = 2 → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
51 oveq2 7210 . . . . . . . . . . . 12 ((♯‘𝐹) = 2 → (0...(♯‘𝐹)) = (0...2))
5251feq2d 6520 . . . . . . . . . . 11 ((♯‘𝐹) = 2 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ↔ 𝑃:(0...2)⟶(Vtx‘𝐺)))
5352imbi1d 345 . . . . . . . . . 10 ((♯‘𝐹) = 2 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))) ↔ (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
5450, 53imbi12d 348 . . . . . . . . 9 ((♯‘𝐹) = 2 → ((∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))) ↔ (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))))
5546, 54imbi12d 348 . . . . . . . 8 ((♯‘𝐹) = 2 → (((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))) ↔ ((𝑃‘0) ≠ (𝑃‘2) → (∀𝑘 ∈ {0, 1} ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...2)⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))))
5644, 55syl5ibrcom 250 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → ((♯‘𝐹) = 2 → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))))
5756impd 414 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))))
5857com24 95 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))))))
5958ex 416 . . . 4 (𝐺 ∈ USGraph → (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))))
60593impd 1350 . . 3 (𝐺 ∈ USGraph → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) → (((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
615, 60sylbid 243 . 2 (𝐺 ∈ USGraph → (𝐹(Walks‘𝐺)𝑃 → (((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))))
6261imp31 421 1 (((𝐺 ∈ USGraph ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2935  wral 3054  Vcvv 3401  {cpr 4533   class class class wbr 5043  dom cdm 5540  wf 6365  cfv 6369  (class class class)co 7202  0cc0 10712  1c1 10713   + caddc 10715  2c2 11868  ...cfz 13078  ..^cfzo 13221  chash 13879  Word cword 14052  Vtxcvtx 27059  iEdgciedg 27060  UPGraphcupgr 27143  USGraphcusgr 27212  Walkscwlks 27656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ifp 1064  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-oadd 8195  df-er 8380  df-map 8499  df-pm 8500  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-n0 12074  df-xnn0 12146  df-z 12160  df-uz 12422  df-fz 13079  df-fzo 13222  df-hash 13880  df-word 14053  df-edg 27111  df-uhgr 27121  df-upgr 27145  df-umgr 27146  df-uspgr 27213  df-usgr 27214  df-wlks 27659
This theorem is referenced by:  usgr2wlkspthlem1  27816  usgr2wlkspthlem2  27817
  Copyright terms: Public domain W3C validator