Proof of Theorem opthhausdorff0
Step | Hyp | Ref
| Expression |
1 | | prex 5350 |
. . . 4
⊢ {𝐴, 𝑂} ∈ V |
2 | | prex 5350 |
. . . 4
⊢ {𝐵, 𝑇} ∈ V |
3 | | prex 5350 |
. . . 4
⊢ {𝐶, 𝑂} ∈ V |
4 | | prex 5350 |
. . . 4
⊢ {𝐷, 𝑇} ∈ V |
5 | 1, 2, 3, 4 | preq12b 4778 |
. . 3
⊢ ({{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}} ↔ (({𝐴, 𝑂} = {𝐶, 𝑂} ∧ {𝐵, 𝑇} = {𝐷, 𝑇}) ∨ ({𝐴, 𝑂} = {𝐷, 𝑇} ∧ {𝐵, 𝑇} = {𝐶, 𝑂}))) |
6 | | opthhausdorff0.a |
. . . . . 6
⊢ 𝐴 ∈ V |
7 | | opthhausdorff0.c |
. . . . . 6
⊢ 𝐶 ∈ V |
8 | 6, 7 | preqr1 4776 |
. . . . 5
⊢ ({𝐴, 𝑂} = {𝐶, 𝑂} → 𝐴 = 𝐶) |
9 | | opthhausdorff0.b |
. . . . . 6
⊢ 𝐵 ∈ V |
10 | | opthhausdorff0.d |
. . . . . 6
⊢ 𝐷 ∈ V |
11 | 9, 10 | preqr1 4776 |
. . . . 5
⊢ ({𝐵, 𝑇} = {𝐷, 𝑇} → 𝐵 = 𝐷) |
12 | 8, 11 | anim12i 612 |
. . . 4
⊢ (({𝐴, 𝑂} = {𝐶, 𝑂} ∧ {𝐵, 𝑇} = {𝐷, 𝑇}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
13 | | opthhausdorff0.1 |
. . . . . . 7
⊢ 𝑂 ∈ V |
14 | | opthhausdorff0.2 |
. . . . . . 7
⊢ 𝑇 ∈ V |
15 | 6, 13, 10, 14 | preq12b 4778 |
. . . . . 6
⊢ ({𝐴, 𝑂} = {𝐷, 𝑇} ↔ ((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) ∨ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷))) |
16 | | opthhausdorff0.3 |
. . . . . . . . 9
⊢ 𝑂 ≠ 𝑇 |
17 | | eqneqall 2953 |
. . . . . . . . 9
⊢ (𝑂 = 𝑇 → (𝑂 ≠ 𝑇 → ({𝐵, 𝑇} = {𝐶, 𝑂} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) |
18 | 16, 17 | mpi 20 |
. . . . . . . 8
⊢ (𝑂 = 𝑇 → ({𝐵, 𝑇} = {𝐶, 𝑂} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
19 | 18 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) → ({𝐵, 𝑇} = {𝐶, 𝑂} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
20 | 9, 14, 7, 13 | preq12b 4778 |
. . . . . . . . 9
⊢ ({𝐵, 𝑇} = {𝐶, 𝑂} ↔ ((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) ∨ (𝐵 = 𝑂 ∧ 𝑇 = 𝐶))) |
21 | | eqneqall 2953 |
. . . . . . . . . . . . 13
⊢ (𝑂 = 𝑇 → (𝑂 ≠ 𝑇 → ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) |
22 | 16, 21 | mpi 20 |
. . . . . . . . . . . 12
⊢ (𝑂 = 𝑇 → ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
23 | 22 | eqcoms 2746 |
. . . . . . . . . . 11
⊢ (𝑇 = 𝑂 → ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
24 | 23 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) → ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
25 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → 𝐴 = 𝑇) |
26 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝐵 = 𝑂 ∧ 𝑇 = 𝐶) → 𝑇 = 𝐶) |
27 | 25, 26 | sylan9eqr 2801 |
. . . . . . . . . . . 12
⊢ (((𝐵 = 𝑂 ∧ 𝑇 = 𝐶) ∧ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷)) → 𝐴 = 𝐶) |
28 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝐵 = 𝑂 ∧ 𝑇 = 𝐶) → 𝐵 = 𝑂) |
29 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → 𝑂 = 𝐷) |
30 | 28, 29 | sylan9eq 2799 |
. . . . . . . . . . . 12
⊢ (((𝐵 = 𝑂 ∧ 𝑇 = 𝐶) ∧ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷)) → 𝐵 = 𝐷) |
31 | 27, 30 | jca 511 |
. . . . . . . . . . 11
⊢ (((𝐵 = 𝑂 ∧ 𝑇 = 𝐶) ∧ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
32 | 31 | ex 412 |
. . . . . . . . . 10
⊢ ((𝐵 = 𝑂 ∧ 𝑇 = 𝐶) → ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
33 | 24, 32 | jaoi 853 |
. . . . . . . . 9
⊢ (((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) ∨ (𝐵 = 𝑂 ∧ 𝑇 = 𝐶)) → ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
34 | 20, 33 | sylbi 216 |
. . . . . . . 8
⊢ ({𝐵, 𝑇} = {𝐶, 𝑂} → ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
35 | 34 | com12 32 |
. . . . . . 7
⊢ ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → ({𝐵, 𝑇} = {𝐶, 𝑂} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
36 | 19, 35 | jaoi 853 |
. . . . . 6
⊢ (((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) ∨ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷)) → ({𝐵, 𝑇} = {𝐶, 𝑂} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
37 | 15, 36 | sylbi 216 |
. . . . 5
⊢ ({𝐴, 𝑂} = {𝐷, 𝑇} → ({𝐵, 𝑇} = {𝐶, 𝑂} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
38 | 37 | imp 406 |
. . . 4
⊢ (({𝐴, 𝑂} = {𝐷, 𝑇} ∧ {𝐵, 𝑇} = {𝐶, 𝑂}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
39 | 12, 38 | jaoi 853 |
. . 3
⊢ ((({𝐴, 𝑂} = {𝐶, 𝑂} ∧ {𝐵, 𝑇} = {𝐷, 𝑇}) ∨ ({𝐴, 𝑂} = {𝐷, 𝑇} ∧ {𝐵, 𝑇} = {𝐶, 𝑂})) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
40 | 5, 39 | sylbi 216 |
. 2
⊢ ({{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
41 | | preq1 4666 |
. . . 4
⊢ (𝐴 = 𝐶 → {𝐴, 𝑂} = {𝐶, 𝑂}) |
42 | 41 | adantr 480 |
. . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝑂} = {𝐶, 𝑂}) |
43 | | preq1 4666 |
. . . 4
⊢ (𝐵 = 𝐷 → {𝐵, 𝑇} = {𝐷, 𝑇}) |
44 | 43 | adantl 481 |
. . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐵, 𝑇} = {𝐷, 𝑇}) |
45 | 42, 44 | preq12d 4674 |
. 2
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}}) |
46 | 40, 45 | impbii 208 |
1
⊢ ({{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |