MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthhausdorff0 Structured version   Visualization version   GIF version

Theorem opthhausdorff0 5264
Description: Justification theorem for the ordered pair definition of Felix Hausdorff in "Grundzüge der Mengenlehre" ("Basics of Set Theory"), 1914, p. 32: 𝐴, 𝐵_H = {{𝐴, 𝑂}, {𝐵, 𝑇}}. Hausdorff used 1 and 2 instead of 𝑂 and 𝑇, but actually, any two different fixed sets will do (e.g., 𝑂 = ∅ and 𝑇 = {∅}, see 0nep0 5112). Furthermore, Hausdorff demanded that 𝑂 and 𝑇 are both different from 𝐴 as well as 𝐵, which is actually not necessary if all involved classes exist as sets (i.e. are not proper classes), in contrast to opthhausdorff 5263. See df-op 4448 for other ordered pair definitions. (Contributed by AV, 12-Jun-2022.)
Hypotheses
Ref Expression
opthhausdorff0.a 𝐴 ∈ V
opthhausdorff0.b 𝐵 ∈ V
opthhausdorff0.c 𝐶 ∈ V
opthhausdorff0.d 𝐷 ∈ V
opthhausdorff0.1 𝑂 ∈ V
opthhausdorff0.2 𝑇 ∈ V
opthhausdorff0.3 𝑂𝑇
Assertion
Ref Expression
opthhausdorff0 ({{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}} ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem opthhausdorff0
StepHypRef Expression
1 prex 5189 . . . 4 {𝐴, 𝑂} ∈ V
2 prex 5189 . . . 4 {𝐵, 𝑇} ∈ V
3 prex 5189 . . . 4 {𝐶, 𝑂} ∈ V
4 prex 5189 . . . 4 {𝐷, 𝑇} ∈ V
51, 2, 3, 4preq12b 4655 . . 3 ({{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}} ↔ (({𝐴, 𝑂} = {𝐶, 𝑂} ∧ {𝐵, 𝑇} = {𝐷, 𝑇}) ∨ ({𝐴, 𝑂} = {𝐷, 𝑇} ∧ {𝐵, 𝑇} = {𝐶, 𝑂})))
6 opthhausdorff0.a . . . . . 6 𝐴 ∈ V
7 opthhausdorff0.c . . . . . 6 𝐶 ∈ V
86, 7preqr1 4653 . . . . 5 ({𝐴, 𝑂} = {𝐶, 𝑂} → 𝐴 = 𝐶)
9 opthhausdorff0.b . . . . . 6 𝐵 ∈ V
10 opthhausdorff0.d . . . . . 6 𝐷 ∈ V
119, 10preqr1 4653 . . . . 5 ({𝐵, 𝑇} = {𝐷, 𝑇} → 𝐵 = 𝐷)
128, 11anim12i 603 . . . 4 (({𝐴, 𝑂} = {𝐶, 𝑂} ∧ {𝐵, 𝑇} = {𝐷, 𝑇}) → (𝐴 = 𝐶𝐵 = 𝐷))
13 opthhausdorff0.1 . . . . . . 7 𝑂 ∈ V
14 opthhausdorff0.2 . . . . . . 7 𝑇 ∈ V
156, 13, 10, 14preq12b 4655 . . . . . 6 ({𝐴, 𝑂} = {𝐷, 𝑇} ↔ ((𝐴 = 𝐷𝑂 = 𝑇) ∨ (𝐴 = 𝑇𝑂 = 𝐷)))
16 opthhausdorff0.3 . . . . . . . . 9 𝑂𝑇
17 eqneqall 2979 . . . . . . . . 9 (𝑂 = 𝑇 → (𝑂𝑇 → ({𝐵, 𝑇} = {𝐶, 𝑂} → (𝐴 = 𝐶𝐵 = 𝐷))))
1816, 17mpi 20 . . . . . . . 8 (𝑂 = 𝑇 → ({𝐵, 𝑇} = {𝐶, 𝑂} → (𝐴 = 𝐶𝐵 = 𝐷)))
1918adantl 474 . . . . . . 7 ((𝐴 = 𝐷𝑂 = 𝑇) → ({𝐵, 𝑇} = {𝐶, 𝑂} → (𝐴 = 𝐶𝐵 = 𝐷)))
209, 14, 7, 13preq12b 4655 . . . . . . . . 9 ({𝐵, 𝑇} = {𝐶, 𝑂} ↔ ((𝐵 = 𝐶𝑇 = 𝑂) ∨ (𝐵 = 𝑂𝑇 = 𝐶)))
21 eqneqall 2979 . . . . . . . . . . . . 13 (𝑂 = 𝑇 → (𝑂𝑇 → ((𝐴 = 𝑇𝑂 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))))
2216, 21mpi 20 . . . . . . . . . . . 12 (𝑂 = 𝑇 → ((𝐴 = 𝑇𝑂 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
2322eqcoms 2787 . . . . . . . . . . 11 (𝑇 = 𝑂 → ((𝐴 = 𝑇𝑂 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
2423adantl 474 . . . . . . . . . 10 ((𝐵 = 𝐶𝑇 = 𝑂) → ((𝐴 = 𝑇𝑂 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
25 simpl 475 . . . . . . . . . . . . 13 ((𝐴 = 𝑇𝑂 = 𝐷) → 𝐴 = 𝑇)
26 simpr 477 . . . . . . . . . . . . 13 ((𝐵 = 𝑂𝑇 = 𝐶) → 𝑇 = 𝐶)
2725, 26sylan9eqr 2837 . . . . . . . . . . . 12 (((𝐵 = 𝑂𝑇 = 𝐶) ∧ (𝐴 = 𝑇𝑂 = 𝐷)) → 𝐴 = 𝐶)
28 simpl 475 . . . . . . . . . . . . 13 ((𝐵 = 𝑂𝑇 = 𝐶) → 𝐵 = 𝑂)
29 simpr 477 . . . . . . . . . . . . 13 ((𝐴 = 𝑇𝑂 = 𝐷) → 𝑂 = 𝐷)
3028, 29sylan9eq 2835 . . . . . . . . . . . 12 (((𝐵 = 𝑂𝑇 = 𝐶) ∧ (𝐴 = 𝑇𝑂 = 𝐷)) → 𝐵 = 𝐷)
3127, 30jca 504 . . . . . . . . . . 11 (((𝐵 = 𝑂𝑇 = 𝐶) ∧ (𝐴 = 𝑇𝑂 = 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷))
3231ex 405 . . . . . . . . . 10 ((𝐵 = 𝑂𝑇 = 𝐶) → ((𝐴 = 𝑇𝑂 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
3324, 32jaoi 843 . . . . . . . . 9 (((𝐵 = 𝐶𝑇 = 𝑂) ∨ (𝐵 = 𝑂𝑇 = 𝐶)) → ((𝐴 = 𝑇𝑂 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
3420, 33sylbi 209 . . . . . . . 8 ({𝐵, 𝑇} = {𝐶, 𝑂} → ((𝐴 = 𝑇𝑂 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
3534com12 32 . . . . . . 7 ((𝐴 = 𝑇𝑂 = 𝐷) → ({𝐵, 𝑇} = {𝐶, 𝑂} → (𝐴 = 𝐶𝐵 = 𝐷)))
3619, 35jaoi 843 . . . . . 6 (((𝐴 = 𝐷𝑂 = 𝑇) ∨ (𝐴 = 𝑇𝑂 = 𝐷)) → ({𝐵, 𝑇} = {𝐶, 𝑂} → (𝐴 = 𝐶𝐵 = 𝐷)))
3715, 36sylbi 209 . . . . 5 ({𝐴, 𝑂} = {𝐷, 𝑇} → ({𝐵, 𝑇} = {𝐶, 𝑂} → (𝐴 = 𝐶𝐵 = 𝐷)))
3837imp 398 . . . 4 (({𝐴, 𝑂} = {𝐷, 𝑇} ∧ {𝐵, 𝑇} = {𝐶, 𝑂}) → (𝐴 = 𝐶𝐵 = 𝐷))
3912, 38jaoi 843 . . 3 ((({𝐴, 𝑂} = {𝐶, 𝑂} ∧ {𝐵, 𝑇} = {𝐷, 𝑇}) ∨ ({𝐴, 𝑂} = {𝐷, 𝑇} ∧ {𝐵, 𝑇} = {𝐶, 𝑂})) → (𝐴 = 𝐶𝐵 = 𝐷))
405, 39sylbi 209 . 2 ({{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}} → (𝐴 = 𝐶𝐵 = 𝐷))
41 preq1 4543 . . . 4 (𝐴 = 𝐶 → {𝐴, 𝑂} = {𝐶, 𝑂})
4241adantr 473 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴, 𝑂} = {𝐶, 𝑂})
43 preq1 4543 . . . 4 (𝐵 = 𝐷 → {𝐵, 𝑇} = {𝐷, 𝑇})
4443adantl 474 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐵, 𝑇} = {𝐷, 𝑇})
4542, 44preq12d 4551 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → {{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}})
4640, 45impbii 201 1 ({{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}} ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wo 833   = wceq 1507  wcel 2050  wne 2968  Vcvv 3416  {cpr 4443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pr 5186
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-v 3418  df-dif 3833  df-un 3835  df-nul 4180  df-sn 4442  df-pr 4444
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator