Proof of Theorem opthhausdorff0
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | prex 5436 | . . . 4
⊢ {𝐴, 𝑂} ∈ V | 
| 2 |  | prex 5436 | . . . 4
⊢ {𝐵, 𝑇} ∈ V | 
| 3 |  | prex 5436 | . . . 4
⊢ {𝐶, 𝑂} ∈ V | 
| 4 |  | prex 5436 | . . . 4
⊢ {𝐷, 𝑇} ∈ V | 
| 5 | 1, 2, 3, 4 | preq12b 4849 | . . 3
⊢ ({{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}} ↔ (({𝐴, 𝑂} = {𝐶, 𝑂} ∧ {𝐵, 𝑇} = {𝐷, 𝑇}) ∨ ({𝐴, 𝑂} = {𝐷, 𝑇} ∧ {𝐵, 𝑇} = {𝐶, 𝑂}))) | 
| 6 |  | opthhausdorff0.a | . . . . . 6
⊢ 𝐴 ∈ V | 
| 7 |  | opthhausdorff0.c | . . . . . 6
⊢ 𝐶 ∈ V | 
| 8 | 6, 7 | preqr1 4847 | . . . . 5
⊢ ({𝐴, 𝑂} = {𝐶, 𝑂} → 𝐴 = 𝐶) | 
| 9 |  | opthhausdorff0.b | . . . . . 6
⊢ 𝐵 ∈ V | 
| 10 |  | opthhausdorff0.d | . . . . . 6
⊢ 𝐷 ∈ V | 
| 11 | 9, 10 | preqr1 4847 | . . . . 5
⊢ ({𝐵, 𝑇} = {𝐷, 𝑇} → 𝐵 = 𝐷) | 
| 12 | 8, 11 | anim12i 613 | . . . 4
⊢ (({𝐴, 𝑂} = {𝐶, 𝑂} ∧ {𝐵, 𝑇} = {𝐷, 𝑇}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 13 |  | opthhausdorff0.1 | . . . . . . 7
⊢ 𝑂 ∈ V | 
| 14 |  | opthhausdorff0.2 | . . . . . . 7
⊢ 𝑇 ∈ V | 
| 15 | 6, 13, 10, 14 | preq12b 4849 | . . . . . 6
⊢ ({𝐴, 𝑂} = {𝐷, 𝑇} ↔ ((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) ∨ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷))) | 
| 16 |  | opthhausdorff0.3 | . . . . . . . . 9
⊢ 𝑂 ≠ 𝑇 | 
| 17 |  | eqneqall 2950 | . . . . . . . . 9
⊢ (𝑂 = 𝑇 → (𝑂 ≠ 𝑇 → ({𝐵, 𝑇} = {𝐶, 𝑂} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) | 
| 18 | 16, 17 | mpi 20 | . . . . . . . 8
⊢ (𝑂 = 𝑇 → ({𝐵, 𝑇} = {𝐶, 𝑂} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 19 | 18 | adantl 481 | . . . . . . 7
⊢ ((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) → ({𝐵, 𝑇} = {𝐶, 𝑂} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 20 | 9, 14, 7, 13 | preq12b 4849 | . . . . . . . . 9
⊢ ({𝐵, 𝑇} = {𝐶, 𝑂} ↔ ((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) ∨ (𝐵 = 𝑂 ∧ 𝑇 = 𝐶))) | 
| 21 |  | eqneqall 2950 | . . . . . . . . . . . . 13
⊢ (𝑂 = 𝑇 → (𝑂 ≠ 𝑇 → ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) | 
| 22 | 16, 21 | mpi 20 | . . . . . . . . . . . 12
⊢ (𝑂 = 𝑇 → ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 23 | 22 | eqcoms 2744 | . . . . . . . . . . 11
⊢ (𝑇 = 𝑂 → ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 24 | 23 | adantl 481 | . . . . . . . . . 10
⊢ ((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) → ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 25 |  | simpl 482 | . . . . . . . . . . . . 13
⊢ ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → 𝐴 = 𝑇) | 
| 26 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ ((𝐵 = 𝑂 ∧ 𝑇 = 𝐶) → 𝑇 = 𝐶) | 
| 27 | 25, 26 | sylan9eqr 2798 | . . . . . . . . . . . 12
⊢ (((𝐵 = 𝑂 ∧ 𝑇 = 𝐶) ∧ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷)) → 𝐴 = 𝐶) | 
| 28 |  | simpl 482 | . . . . . . . . . . . . 13
⊢ ((𝐵 = 𝑂 ∧ 𝑇 = 𝐶) → 𝐵 = 𝑂) | 
| 29 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → 𝑂 = 𝐷) | 
| 30 | 28, 29 | sylan9eq 2796 | . . . . . . . . . . . 12
⊢ (((𝐵 = 𝑂 ∧ 𝑇 = 𝐶) ∧ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷)) → 𝐵 = 𝐷) | 
| 31 | 27, 30 | jca 511 | . . . . . . . . . . 11
⊢ (((𝐵 = 𝑂 ∧ 𝑇 = 𝐶) ∧ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 32 | 31 | ex 412 | . . . . . . . . . 10
⊢ ((𝐵 = 𝑂 ∧ 𝑇 = 𝐶) → ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 33 | 24, 32 | jaoi 857 | . . . . . . . . 9
⊢ (((𝐵 = 𝐶 ∧ 𝑇 = 𝑂) ∨ (𝐵 = 𝑂 ∧ 𝑇 = 𝐶)) → ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 34 | 20, 33 | sylbi 217 | . . . . . . . 8
⊢ ({𝐵, 𝑇} = {𝐶, 𝑂} → ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 35 | 34 | com12 32 | . . . . . . 7
⊢ ((𝐴 = 𝑇 ∧ 𝑂 = 𝐷) → ({𝐵, 𝑇} = {𝐶, 𝑂} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 36 | 19, 35 | jaoi 857 | . . . . . 6
⊢ (((𝐴 = 𝐷 ∧ 𝑂 = 𝑇) ∨ (𝐴 = 𝑇 ∧ 𝑂 = 𝐷)) → ({𝐵, 𝑇} = {𝐶, 𝑂} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 37 | 15, 36 | sylbi 217 | . . . . 5
⊢ ({𝐴, 𝑂} = {𝐷, 𝑇} → ({𝐵, 𝑇} = {𝐶, 𝑂} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 38 | 37 | imp 406 | . . . 4
⊢ (({𝐴, 𝑂} = {𝐷, 𝑇} ∧ {𝐵, 𝑇} = {𝐶, 𝑂}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 39 | 12, 38 | jaoi 857 | . . 3
⊢ ((({𝐴, 𝑂} = {𝐶, 𝑂} ∧ {𝐵, 𝑇} = {𝐷, 𝑇}) ∨ ({𝐴, 𝑂} = {𝐷, 𝑇} ∧ {𝐵, 𝑇} = {𝐶, 𝑂})) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 40 | 5, 39 | sylbi 217 | . 2
⊢ ({{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 41 |  | preq1 4732 | . . . 4
⊢ (𝐴 = 𝐶 → {𝐴, 𝑂} = {𝐶, 𝑂}) | 
| 42 | 41 | adantr 480 | . . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝑂} = {𝐶, 𝑂}) | 
| 43 |  | preq1 4732 | . . . 4
⊢ (𝐵 = 𝐷 → {𝐵, 𝑇} = {𝐷, 𝑇}) | 
| 44 | 43 | adantl 481 | . . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐵, 𝑇} = {𝐷, 𝑇}) | 
| 45 | 42, 44 | preq12d 4740 | . 2
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}}) | 
| 46 | 40, 45 | impbii 209 | 1
⊢ ({{𝐴, 𝑂}, {𝐵, 𝑇}} = {{𝐶, 𝑂}, {𝐷, 𝑇}} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |