MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preqr2 Structured version   Visualization version   GIF version

Theorem preqr2 4777
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 15-Jul-1993.)
Hypotheses
Ref Expression
preqr1.a 𝐴 ∈ V
preqr1.b 𝐵 ∈ V
Assertion
Ref Expression
preqr2 ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵)

Proof of Theorem preqr2
StepHypRef Expression
1 prcom 4665 . . 3 {𝐶, 𝐴} = {𝐴, 𝐶}
2 prcom 4665 . . 3 {𝐶, 𝐵} = {𝐵, 𝐶}
31, 2eqeq12i 2756 . 2 ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ {𝐴, 𝐶} = {𝐵, 𝐶})
4 preqr1.a . . 3 𝐴 ∈ V
5 preqr1.b . . 3 𝐵 ∈ V
64, 5preqr1 4776 . 2 ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)
73, 6sylbi 216 1 ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  {cpr 4560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-sn 4559  df-pr 4561
This theorem is referenced by:  preq12b  4778  opth  5385  opthreg  9306  usgredgreu  27488  uspgredg2vtxeu  27490  altopthsn  34190
  Copyright terms: Public domain W3C validator