Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preqr2 | Structured version Visualization version GIF version |
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
preqr1.a | ⊢ 𝐴 ∈ V |
preqr1.b | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
preqr2 | ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 4668 | . . 3 ⊢ {𝐶, 𝐴} = {𝐴, 𝐶} | |
2 | prcom 4668 | . . 3 ⊢ {𝐶, 𝐵} = {𝐵, 𝐶} | |
3 | 1, 2 | eqeq12i 2756 | . 2 ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ {𝐴, 𝐶} = {𝐵, 𝐶}) |
4 | preqr1.a | . . 3 ⊢ 𝐴 ∈ V | |
5 | preqr1.b | . . 3 ⊢ 𝐵 ∈ V | |
6 | 4, 5 | preqr1 4779 | . 2 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵) |
7 | 3, 6 | sylbi 216 | 1 ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {cpr 4563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-sn 4562 df-pr 4564 |
This theorem is referenced by: preq12b 4781 opth 5391 opthreg 9376 usgredgreu 27585 uspgredg2vtxeu 27587 altopthsn 34263 |
Copyright terms: Public domain | W3C validator |