| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preqr2 | Structured version Visualization version GIF version | ||
| Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| preqr1.a | ⊢ 𝐴 ∈ V |
| preqr1.b | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| preqr2 | ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcom 4712 | . . 3 ⊢ {𝐶, 𝐴} = {𝐴, 𝐶} | |
| 2 | prcom 4712 | . . 3 ⊢ {𝐶, 𝐵} = {𝐵, 𝐶} | |
| 3 | 1, 2 | eqeq12i 2752 | . 2 ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ {𝐴, 𝐶} = {𝐵, 𝐶}) |
| 4 | preqr1.a | . . 3 ⊢ 𝐴 ∈ V | |
| 5 | preqr1.b | . . 3 ⊢ 𝐵 ∈ V | |
| 6 | 4, 5 | preqr1 4828 | . 2 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵) |
| 7 | 3, 6 | sylbi 217 | 1 ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 {cpr 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-un 3936 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: preq12b 4830 opth 5461 opthreg 9640 usgredgreu 29164 uspgredg2vtxeu 29166 altopthsn 35937 |
| Copyright terms: Public domain | W3C validator |