MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preqr2 Structured version   Visualization version   GIF version

Theorem preqr2 4798
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 15-Jul-1993.)
Hypotheses
Ref Expression
preqr1.a 𝐴 ∈ V
preqr1.b 𝐵 ∈ V
Assertion
Ref Expression
preqr2 ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵)

Proof of Theorem preqr2
StepHypRef Expression
1 prcom 4682 . . 3 {𝐶, 𝐴} = {𝐴, 𝐶}
2 prcom 4682 . . 3 {𝐶, 𝐵} = {𝐵, 𝐶}
31, 2eqeq12i 2749 . 2 ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ {𝐴, 𝐶} = {𝐵, 𝐶})
4 preqr1.a . . 3 𝐴 ∈ V
5 preqr1.b . . 3 𝐵 ∈ V
64, 5preqr1 4797 . 2 ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)
73, 6sylbi 217 1 ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  {cpr 4575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-sn 4574  df-pr 4576
This theorem is referenced by:  preq12b  4799  opth  5414  opthreg  9508  usgredgreu  29196  uspgredg2vtxeu  29198  altopthsn  36003
  Copyright terms: Public domain W3C validator