MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preqr2 Structured version   Visualization version   GIF version

Theorem preqr2 4846
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 15-Jul-1993.)
Hypotheses
Ref Expression
preqr1.a 𝐴 ∈ V
preqr1.b 𝐵 ∈ V
Assertion
Ref Expression
preqr2 ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵)

Proof of Theorem preqr2
StepHypRef Expression
1 prcom 4732 . . 3 {𝐶, 𝐴} = {𝐴, 𝐶}
2 prcom 4732 . . 3 {𝐶, 𝐵} = {𝐵, 𝐶}
31, 2eqeq12i 2745 . 2 ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ {𝐴, 𝐶} = {𝐵, 𝐶})
4 preqr1.a . . 3 𝐴 ∈ V
5 preqr1.b . . 3 𝐵 ∈ V
64, 5preqr1 4845 . 2 ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)
73, 6sylbi 216 1 ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3469  {cpr 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-v 3471  df-un 3949  df-sn 4625  df-pr 4627
This theorem is referenced by:  preq12b  4847  opth  5472  opthreg  9635  usgredgreu  29024  uspgredg2vtxeu  29026  altopthsn  35547
  Copyright terms: Public domain W3C validator