![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preqr2 | Structured version Visualization version GIF version |
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
preqr1.a | ⊢ 𝐴 ∈ V |
preqr1.b | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
preqr2 | ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 4732 | . . 3 ⊢ {𝐶, 𝐴} = {𝐴, 𝐶} | |
2 | prcom 4732 | . . 3 ⊢ {𝐶, 𝐵} = {𝐵, 𝐶} | |
3 | 1, 2 | eqeq12i 2745 | . 2 ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ {𝐴, 𝐶} = {𝐵, 𝐶}) |
4 | preqr1.a | . . 3 ⊢ 𝐴 ∈ V | |
5 | preqr1.b | . . 3 ⊢ 𝐵 ∈ V | |
6 | 4, 5 | preqr1 4845 | . 2 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵) |
7 | 3, 6 | sylbi 216 | 1 ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3469 {cpr 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 df-un 3949 df-sn 4625 df-pr 4627 |
This theorem is referenced by: preq12b 4847 opth 5472 opthreg 9635 usgredgreu 29024 uspgredg2vtxeu 29026 altopthsn 35547 |
Copyright terms: Public domain | W3C validator |