MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preq12bg Structured version   Visualization version   GIF version

Theorem preq12bg 4855
Description: Closed form of preq12b 4852. (Contributed by Scott Fenton, 28-Mar-2014.)
Assertion
Ref Expression
preq12bg (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))

Proof of Theorem preq12bg
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq1 4738 . . . . . . 7 (𝑥 = 𝐴 → {𝑥, 𝑦} = {𝐴, 𝑦})
21eqeq1d 2733 . . . . . 6 (𝑥 = 𝐴 → ({𝑥, 𝑦} = {𝑧, 𝐷} ↔ {𝐴, 𝑦} = {𝑧, 𝐷}))
3 eqeq1 2735 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 = 𝑧𝐴 = 𝑧))
43anbi1d 629 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 = 𝑧𝑦 = 𝐷) ↔ (𝐴 = 𝑧𝑦 = 𝐷)))
5 eqeq1 2735 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 = 𝐷𝐴 = 𝐷))
65anbi1d 629 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 = 𝐷𝑦 = 𝑧) ↔ (𝐴 = 𝐷𝑦 = 𝑧)))
74, 6orbi12d 916 . . . . . 6 (𝑥 = 𝐴 → (((𝑥 = 𝑧𝑦 = 𝐷) ∨ (𝑥 = 𝐷𝑦 = 𝑧)) ↔ ((𝐴 = 𝑧𝑦 = 𝐷) ∨ (𝐴 = 𝐷𝑦 = 𝑧))))
82, 7bibi12d 344 . . . . 5 (𝑥 = 𝐴 → (({𝑥, 𝑦} = {𝑧, 𝐷} ↔ ((𝑥 = 𝑧𝑦 = 𝐷) ∨ (𝑥 = 𝐷𝑦 = 𝑧))) ↔ ({𝐴, 𝑦} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝑦 = 𝐷) ∨ (𝐴 = 𝐷𝑦 = 𝑧)))))
98imbi2d 339 . . . 4 (𝑥 = 𝐴 → ((𝐷𝑌 → ({𝑥, 𝑦} = {𝑧, 𝐷} ↔ ((𝑥 = 𝑧𝑦 = 𝐷) ∨ (𝑥 = 𝐷𝑦 = 𝑧)))) ↔ (𝐷𝑌 → ({𝐴, 𝑦} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝑦 = 𝐷) ∨ (𝐴 = 𝐷𝑦 = 𝑧))))))
10 preq2 4739 . . . . . . 7 (𝑦 = 𝐵 → {𝐴, 𝑦} = {𝐴, 𝐵})
1110eqeq1d 2733 . . . . . 6 (𝑦 = 𝐵 → ({𝐴, 𝑦} = {𝑧, 𝐷} ↔ {𝐴, 𝐵} = {𝑧, 𝐷}))
12 eqeq1 2735 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦 = 𝐷𝐵 = 𝐷))
1312anbi2d 628 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴 = 𝑧𝑦 = 𝐷) ↔ (𝐴 = 𝑧𝐵 = 𝐷)))
14 eqeq1 2735 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦 = 𝑧𝐵 = 𝑧))
1514anbi2d 628 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴 = 𝐷𝑦 = 𝑧) ↔ (𝐴 = 𝐷𝐵 = 𝑧)))
1613, 15orbi12d 916 . . . . . 6 (𝑦 = 𝐵 → (((𝐴 = 𝑧𝑦 = 𝐷) ∨ (𝐴 = 𝐷𝑦 = 𝑧)) ↔ ((𝐴 = 𝑧𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝑧))))
1711, 16bibi12d 344 . . . . 5 (𝑦 = 𝐵 → (({𝐴, 𝑦} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝑦 = 𝐷) ∨ (𝐴 = 𝐷𝑦 = 𝑧))) ↔ ({𝐴, 𝐵} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝑧)))))
1817imbi2d 339 . . . 4 (𝑦 = 𝐵 → ((𝐷𝑌 → ({𝐴, 𝑦} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝑦 = 𝐷) ∨ (𝐴 = 𝐷𝑦 = 𝑧)))) ↔ (𝐷𝑌 → ({𝐴, 𝐵} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝑧))))))
19 preq1 4738 . . . . . . 7 (𝑧 = 𝐶 → {𝑧, 𝐷} = {𝐶, 𝐷})
2019eqeq2d 2742 . . . . . 6 (𝑧 = 𝐶 → ({𝐴, 𝐵} = {𝑧, 𝐷} ↔ {𝐴, 𝐵} = {𝐶, 𝐷}))
21 eqeq2 2743 . . . . . . . 8 (𝑧 = 𝐶 → (𝐴 = 𝑧𝐴 = 𝐶))
2221anbi1d 629 . . . . . . 7 (𝑧 = 𝐶 → ((𝐴 = 𝑧𝐵 = 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
23 eqeq2 2743 . . . . . . . 8 (𝑧 = 𝐶 → (𝐵 = 𝑧𝐵 = 𝐶))
2423anbi2d 628 . . . . . . 7 (𝑧 = 𝐶 → ((𝐴 = 𝐷𝐵 = 𝑧) ↔ (𝐴 = 𝐷𝐵 = 𝐶)))
2522, 24orbi12d 916 . . . . . 6 (𝑧 = 𝐶 → (((𝐴 = 𝑧𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝑧)) ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
2620, 25bibi12d 344 . . . . 5 (𝑧 = 𝐶 → (({𝐴, 𝐵} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝑧))) ↔ ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))))
2726imbi2d 339 . . . 4 (𝑧 = 𝐶 → ((𝐷𝑌 → ({𝐴, 𝐵} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝑧)))) ↔ (𝐷𝑌 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))))
28 preq2 4739 . . . . . . 7 (𝑤 = 𝐷 → {𝑧, 𝑤} = {𝑧, 𝐷})
2928eqeq2d 2742 . . . . . 6 (𝑤 = 𝐷 → ({𝑥, 𝑦} = {𝑧, 𝑤} ↔ {𝑥, 𝑦} = {𝑧, 𝐷}))
30 eqeq2 2743 . . . . . . . 8 (𝑤 = 𝐷 → (𝑦 = 𝑤𝑦 = 𝐷))
3130anbi2d 628 . . . . . . 7 (𝑤 = 𝐷 → ((𝑥 = 𝑧𝑦 = 𝑤) ↔ (𝑥 = 𝑧𝑦 = 𝐷)))
32 eqeq2 2743 . . . . . . . 8 (𝑤 = 𝐷 → (𝑥 = 𝑤𝑥 = 𝐷))
3332anbi1d 629 . . . . . . 7 (𝑤 = 𝐷 → ((𝑥 = 𝑤𝑦 = 𝑧) ↔ (𝑥 = 𝐷𝑦 = 𝑧)))
3431, 33orbi12d 916 . . . . . 6 (𝑤 = 𝐷 → (((𝑥 = 𝑧𝑦 = 𝑤) ∨ (𝑥 = 𝑤𝑦 = 𝑧)) ↔ ((𝑥 = 𝑧𝑦 = 𝐷) ∨ (𝑥 = 𝐷𝑦 = 𝑧))))
35 vex 3477 . . . . . . 7 𝑥 ∈ V
36 vex 3477 . . . . . . 7 𝑦 ∈ V
37 vex 3477 . . . . . . 7 𝑧 ∈ V
38 vex 3477 . . . . . . 7 𝑤 ∈ V
3935, 36, 37, 38preq12b 4852 . . . . . 6 ({𝑥, 𝑦} = {𝑧, 𝑤} ↔ ((𝑥 = 𝑧𝑦 = 𝑤) ∨ (𝑥 = 𝑤𝑦 = 𝑧)))
4029, 34, 39vtoclbg 3560 . . . . 5 (𝐷𝑌 → ({𝑥, 𝑦} = {𝑧, 𝐷} ↔ ((𝑥 = 𝑧𝑦 = 𝐷) ∨ (𝑥 = 𝐷𝑦 = 𝑧))))
4140a1i 11 . . . 4 ((𝑥𝑉𝑦𝑊𝑧𝑋) → (𝐷𝑌 → ({𝑥, 𝑦} = {𝑧, 𝐷} ↔ ((𝑥 = 𝑧𝑦 = 𝐷) ∨ (𝑥 = 𝐷𝑦 = 𝑧)))))
429, 18, 27, 41vtocl3ga 3570 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐷𝑌 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))))
43423expa 1117 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐶𝑋) → (𝐷𝑌 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))))
4443impr 454 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844  w3a 1086   = wceq 1540  wcel 2105  {cpr 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-un 3954  df-sn 4630  df-pr 4632
This theorem is referenced by:  prneimg  4856  pr1eqbg  4858  preqsnd  4860  preq12nebg  4864  opthprneg  4866  preleqALT  9615  pythagtriplem2  16755  pythagtrip  16772  upgrpredgv  28663  uhgr2edg  28729  usgredg2v  28748  2pthon3v  29461  opprb  46041  or2expropbi  46044  ich2exprop  46439  prsprel  46455  paireqne  46479  poprelb  46492
  Copyright terms: Public domain W3C validator