MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preq12bg Structured version   Visualization version   GIF version

Theorem preq12bg 4790
Description: Closed form of preq12b 4787. (Contributed by Scott Fenton, 28-Mar-2014.)
Assertion
Ref Expression
preq12bg (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))

Proof of Theorem preq12bg
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq1 4673 . . . . . . 7 (𝑥 = 𝐴 → {𝑥, 𝑦} = {𝐴, 𝑦})
21eqeq1d 2738 . . . . . 6 (𝑥 = 𝐴 → ({𝑥, 𝑦} = {𝑧, 𝐷} ↔ {𝐴, 𝑦} = {𝑧, 𝐷}))
3 eqeq1 2740 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 = 𝑧𝐴 = 𝑧))
43anbi1d 631 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 = 𝑧𝑦 = 𝐷) ↔ (𝐴 = 𝑧𝑦 = 𝐷)))
5 eqeq1 2740 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 = 𝐷𝐴 = 𝐷))
65anbi1d 631 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 = 𝐷𝑦 = 𝑧) ↔ (𝐴 = 𝐷𝑦 = 𝑧)))
74, 6orbi12d 917 . . . . . 6 (𝑥 = 𝐴 → (((𝑥 = 𝑧𝑦 = 𝐷) ∨ (𝑥 = 𝐷𝑦 = 𝑧)) ↔ ((𝐴 = 𝑧𝑦 = 𝐷) ∨ (𝐴 = 𝐷𝑦 = 𝑧))))
82, 7bibi12d 346 . . . . 5 (𝑥 = 𝐴 → (({𝑥, 𝑦} = {𝑧, 𝐷} ↔ ((𝑥 = 𝑧𝑦 = 𝐷) ∨ (𝑥 = 𝐷𝑦 = 𝑧))) ↔ ({𝐴, 𝑦} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝑦 = 𝐷) ∨ (𝐴 = 𝐷𝑦 = 𝑧)))))
98imbi2d 341 . . . 4 (𝑥 = 𝐴 → ((𝐷𝑌 → ({𝑥, 𝑦} = {𝑧, 𝐷} ↔ ((𝑥 = 𝑧𝑦 = 𝐷) ∨ (𝑥 = 𝐷𝑦 = 𝑧)))) ↔ (𝐷𝑌 → ({𝐴, 𝑦} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝑦 = 𝐷) ∨ (𝐴 = 𝐷𝑦 = 𝑧))))))
10 preq2 4674 . . . . . . 7 (𝑦 = 𝐵 → {𝐴, 𝑦} = {𝐴, 𝐵})
1110eqeq1d 2738 . . . . . 6 (𝑦 = 𝐵 → ({𝐴, 𝑦} = {𝑧, 𝐷} ↔ {𝐴, 𝐵} = {𝑧, 𝐷}))
12 eqeq1 2740 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦 = 𝐷𝐵 = 𝐷))
1312anbi2d 630 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴 = 𝑧𝑦 = 𝐷) ↔ (𝐴 = 𝑧𝐵 = 𝐷)))
14 eqeq1 2740 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦 = 𝑧𝐵 = 𝑧))
1514anbi2d 630 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴 = 𝐷𝑦 = 𝑧) ↔ (𝐴 = 𝐷𝐵 = 𝑧)))
1613, 15orbi12d 917 . . . . . 6 (𝑦 = 𝐵 → (((𝐴 = 𝑧𝑦 = 𝐷) ∨ (𝐴 = 𝐷𝑦 = 𝑧)) ↔ ((𝐴 = 𝑧𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝑧))))
1711, 16bibi12d 346 . . . . 5 (𝑦 = 𝐵 → (({𝐴, 𝑦} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝑦 = 𝐷) ∨ (𝐴 = 𝐷𝑦 = 𝑧))) ↔ ({𝐴, 𝐵} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝑧)))))
1817imbi2d 341 . . . 4 (𝑦 = 𝐵 → ((𝐷𝑌 → ({𝐴, 𝑦} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝑦 = 𝐷) ∨ (𝐴 = 𝐷𝑦 = 𝑧)))) ↔ (𝐷𝑌 → ({𝐴, 𝐵} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝑧))))))
19 preq1 4673 . . . . . . 7 (𝑧 = 𝐶 → {𝑧, 𝐷} = {𝐶, 𝐷})
2019eqeq2d 2747 . . . . . 6 (𝑧 = 𝐶 → ({𝐴, 𝐵} = {𝑧, 𝐷} ↔ {𝐴, 𝐵} = {𝐶, 𝐷}))
21 eqeq2 2748 . . . . . . . 8 (𝑧 = 𝐶 → (𝐴 = 𝑧𝐴 = 𝐶))
2221anbi1d 631 . . . . . . 7 (𝑧 = 𝐶 → ((𝐴 = 𝑧𝐵 = 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
23 eqeq2 2748 . . . . . . . 8 (𝑧 = 𝐶 → (𝐵 = 𝑧𝐵 = 𝐶))
2423anbi2d 630 . . . . . . 7 (𝑧 = 𝐶 → ((𝐴 = 𝐷𝐵 = 𝑧) ↔ (𝐴 = 𝐷𝐵 = 𝐶)))
2522, 24orbi12d 917 . . . . . 6 (𝑧 = 𝐶 → (((𝐴 = 𝑧𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝑧)) ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
2620, 25bibi12d 346 . . . . 5 (𝑧 = 𝐶 → (({𝐴, 𝐵} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝑧))) ↔ ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))))
2726imbi2d 341 . . . 4 (𝑧 = 𝐶 → ((𝐷𝑌 → ({𝐴, 𝐵} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝑧)))) ↔ (𝐷𝑌 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))))
28 preq2 4674 . . . . . . 7 (𝑤 = 𝐷 → {𝑧, 𝑤} = {𝑧, 𝐷})
2928eqeq2d 2747 . . . . . 6 (𝑤 = 𝐷 → ({𝑥, 𝑦} = {𝑧, 𝑤} ↔ {𝑥, 𝑦} = {𝑧, 𝐷}))
30 eqeq2 2748 . . . . . . . 8 (𝑤 = 𝐷 → (𝑦 = 𝑤𝑦 = 𝐷))
3130anbi2d 630 . . . . . . 7 (𝑤 = 𝐷 → ((𝑥 = 𝑧𝑦 = 𝑤) ↔ (𝑥 = 𝑧𝑦 = 𝐷)))
32 eqeq2 2748 . . . . . . . 8 (𝑤 = 𝐷 → (𝑥 = 𝑤𝑥 = 𝐷))
3332anbi1d 631 . . . . . . 7 (𝑤 = 𝐷 → ((𝑥 = 𝑤𝑦 = 𝑧) ↔ (𝑥 = 𝐷𝑦 = 𝑧)))
3431, 33orbi12d 917 . . . . . 6 (𝑤 = 𝐷 → (((𝑥 = 𝑧𝑦 = 𝑤) ∨ (𝑥 = 𝑤𝑦 = 𝑧)) ↔ ((𝑥 = 𝑧𝑦 = 𝐷) ∨ (𝑥 = 𝐷𝑦 = 𝑧))))
35 vex 3441 . . . . . . 7 𝑥 ∈ V
36 vex 3441 . . . . . . 7 𝑦 ∈ V
37 vex 3441 . . . . . . 7 𝑧 ∈ V
38 vex 3441 . . . . . . 7 𝑤 ∈ V
3935, 36, 37, 38preq12b 4787 . . . . . 6 ({𝑥, 𝑦} = {𝑧, 𝑤} ↔ ((𝑥 = 𝑧𝑦 = 𝑤) ∨ (𝑥 = 𝑤𝑦 = 𝑧)))
4029, 34, 39vtoclbg 3512 . . . . 5 (𝐷𝑌 → ({𝑥, 𝑦} = {𝑧, 𝐷} ↔ ((𝑥 = 𝑧𝑦 = 𝐷) ∨ (𝑥 = 𝐷𝑦 = 𝑧))))
4140a1i 11 . . . 4 ((𝑥𝑉𝑦𝑊𝑧𝑋) → (𝐷𝑌 → ({𝑥, 𝑦} = {𝑧, 𝐷} ↔ ((𝑥 = 𝑧𝑦 = 𝐷) ∨ (𝑥 = 𝐷𝑦 = 𝑧)))))
429, 18, 27, 41vtocl3ga 3522 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐷𝑌 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))))
43423expa 1118 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐶𝑋) → (𝐷𝑌 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))))
4443impr 456 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 845  w3a 1087   = wceq 1539  wcel 2104  {cpr 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3439  df-un 3897  df-sn 4566  df-pr 4568
This theorem is referenced by:  prneimg  4791  pr1eqbg  4793  preqsnd  4795  preq12nebg  4799  opthprneg  4801  preleqALT  9419  pythagtriplem2  16563  pythagtrip  16580  upgrpredgv  27554  uhgr2edg  27620  usgredg2v  27639  2pthon3v  28353  opprb  44583  or2expropbi  44586  ich2exprop  44981  prsprel  44997  paireqne  45021  poprelb  45034
  Copyright terms: Public domain W3C validator