MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preq12bg Structured version   Visualization version   GIF version

Theorem preq12bg 4802
Description: Closed form of preq12b 4799. (Contributed by Scott Fenton, 28-Mar-2014.)
Assertion
Ref Expression
preq12bg (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))

Proof of Theorem preq12bg
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq1 4683 . . . . . . 7 (𝑥 = 𝐴 → {𝑥, 𝑦} = {𝐴, 𝑦})
21eqeq1d 2733 . . . . . 6 (𝑥 = 𝐴 → ({𝑥, 𝑦} = {𝑧, 𝐷} ↔ {𝐴, 𝑦} = {𝑧, 𝐷}))
3 eqeq1 2735 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 = 𝑧𝐴 = 𝑧))
43anbi1d 631 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 = 𝑧𝑦 = 𝐷) ↔ (𝐴 = 𝑧𝑦 = 𝐷)))
5 eqeq1 2735 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 = 𝐷𝐴 = 𝐷))
65anbi1d 631 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 = 𝐷𝑦 = 𝑧) ↔ (𝐴 = 𝐷𝑦 = 𝑧)))
74, 6orbi12d 918 . . . . . 6 (𝑥 = 𝐴 → (((𝑥 = 𝑧𝑦 = 𝐷) ∨ (𝑥 = 𝐷𝑦 = 𝑧)) ↔ ((𝐴 = 𝑧𝑦 = 𝐷) ∨ (𝐴 = 𝐷𝑦 = 𝑧))))
82, 7bibi12d 345 . . . . 5 (𝑥 = 𝐴 → (({𝑥, 𝑦} = {𝑧, 𝐷} ↔ ((𝑥 = 𝑧𝑦 = 𝐷) ∨ (𝑥 = 𝐷𝑦 = 𝑧))) ↔ ({𝐴, 𝑦} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝑦 = 𝐷) ∨ (𝐴 = 𝐷𝑦 = 𝑧)))))
98imbi2d 340 . . . 4 (𝑥 = 𝐴 → ((𝐷𝑌 → ({𝑥, 𝑦} = {𝑧, 𝐷} ↔ ((𝑥 = 𝑧𝑦 = 𝐷) ∨ (𝑥 = 𝐷𝑦 = 𝑧)))) ↔ (𝐷𝑌 → ({𝐴, 𝑦} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝑦 = 𝐷) ∨ (𝐴 = 𝐷𝑦 = 𝑧))))))
10 preq2 4684 . . . . . . 7 (𝑦 = 𝐵 → {𝐴, 𝑦} = {𝐴, 𝐵})
1110eqeq1d 2733 . . . . . 6 (𝑦 = 𝐵 → ({𝐴, 𝑦} = {𝑧, 𝐷} ↔ {𝐴, 𝐵} = {𝑧, 𝐷}))
12 eqeq1 2735 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦 = 𝐷𝐵 = 𝐷))
1312anbi2d 630 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴 = 𝑧𝑦 = 𝐷) ↔ (𝐴 = 𝑧𝐵 = 𝐷)))
14 eqeq1 2735 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦 = 𝑧𝐵 = 𝑧))
1514anbi2d 630 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴 = 𝐷𝑦 = 𝑧) ↔ (𝐴 = 𝐷𝐵 = 𝑧)))
1613, 15orbi12d 918 . . . . . 6 (𝑦 = 𝐵 → (((𝐴 = 𝑧𝑦 = 𝐷) ∨ (𝐴 = 𝐷𝑦 = 𝑧)) ↔ ((𝐴 = 𝑧𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝑧))))
1711, 16bibi12d 345 . . . . 5 (𝑦 = 𝐵 → (({𝐴, 𝑦} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝑦 = 𝐷) ∨ (𝐴 = 𝐷𝑦 = 𝑧))) ↔ ({𝐴, 𝐵} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝑧)))))
1817imbi2d 340 . . . 4 (𝑦 = 𝐵 → ((𝐷𝑌 → ({𝐴, 𝑦} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝑦 = 𝐷) ∨ (𝐴 = 𝐷𝑦 = 𝑧)))) ↔ (𝐷𝑌 → ({𝐴, 𝐵} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝑧))))))
19 preq1 4683 . . . . . . 7 (𝑧 = 𝐶 → {𝑧, 𝐷} = {𝐶, 𝐷})
2019eqeq2d 2742 . . . . . 6 (𝑧 = 𝐶 → ({𝐴, 𝐵} = {𝑧, 𝐷} ↔ {𝐴, 𝐵} = {𝐶, 𝐷}))
21 eqeq2 2743 . . . . . . . 8 (𝑧 = 𝐶 → (𝐴 = 𝑧𝐴 = 𝐶))
2221anbi1d 631 . . . . . . 7 (𝑧 = 𝐶 → ((𝐴 = 𝑧𝐵 = 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
23 eqeq2 2743 . . . . . . . 8 (𝑧 = 𝐶 → (𝐵 = 𝑧𝐵 = 𝐶))
2423anbi2d 630 . . . . . . 7 (𝑧 = 𝐶 → ((𝐴 = 𝐷𝐵 = 𝑧) ↔ (𝐴 = 𝐷𝐵 = 𝐶)))
2522, 24orbi12d 918 . . . . . 6 (𝑧 = 𝐶 → (((𝐴 = 𝑧𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝑧)) ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
2620, 25bibi12d 345 . . . . 5 (𝑧 = 𝐶 → (({𝐴, 𝐵} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝑧))) ↔ ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))))
2726imbi2d 340 . . . 4 (𝑧 = 𝐶 → ((𝐷𝑌 → ({𝐴, 𝐵} = {𝑧, 𝐷} ↔ ((𝐴 = 𝑧𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝑧)))) ↔ (𝐷𝑌 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))))
28 preq2 4684 . . . . . . 7 (𝑤 = 𝐷 → {𝑧, 𝑤} = {𝑧, 𝐷})
2928eqeq2d 2742 . . . . . 6 (𝑤 = 𝐷 → ({𝑥, 𝑦} = {𝑧, 𝑤} ↔ {𝑥, 𝑦} = {𝑧, 𝐷}))
30 eqeq2 2743 . . . . . . . 8 (𝑤 = 𝐷 → (𝑦 = 𝑤𝑦 = 𝐷))
3130anbi2d 630 . . . . . . 7 (𝑤 = 𝐷 → ((𝑥 = 𝑧𝑦 = 𝑤) ↔ (𝑥 = 𝑧𝑦 = 𝐷)))
32 eqeq2 2743 . . . . . . . 8 (𝑤 = 𝐷 → (𝑥 = 𝑤𝑥 = 𝐷))
3332anbi1d 631 . . . . . . 7 (𝑤 = 𝐷 → ((𝑥 = 𝑤𝑦 = 𝑧) ↔ (𝑥 = 𝐷𝑦 = 𝑧)))
3431, 33orbi12d 918 . . . . . 6 (𝑤 = 𝐷 → (((𝑥 = 𝑧𝑦 = 𝑤) ∨ (𝑥 = 𝑤𝑦 = 𝑧)) ↔ ((𝑥 = 𝑧𝑦 = 𝐷) ∨ (𝑥 = 𝐷𝑦 = 𝑧))))
35 vex 3440 . . . . . . 7 𝑥 ∈ V
36 vex 3440 . . . . . . 7 𝑦 ∈ V
37 vex 3440 . . . . . . 7 𝑧 ∈ V
38 vex 3440 . . . . . . 7 𝑤 ∈ V
3935, 36, 37, 38preq12b 4799 . . . . . 6 ({𝑥, 𝑦} = {𝑧, 𝑤} ↔ ((𝑥 = 𝑧𝑦 = 𝑤) ∨ (𝑥 = 𝑤𝑦 = 𝑧)))
4029, 34, 39vtoclbg 3510 . . . . 5 (𝐷𝑌 → ({𝑥, 𝑦} = {𝑧, 𝐷} ↔ ((𝑥 = 𝑧𝑦 = 𝐷) ∨ (𝑥 = 𝐷𝑦 = 𝑧))))
4140a1i 11 . . . 4 ((𝑥𝑉𝑦𝑊𝑧𝑋) → (𝐷𝑌 → ({𝑥, 𝑦} = {𝑧, 𝐷} ↔ ((𝑥 = 𝑧𝑦 = 𝐷) ∨ (𝑥 = 𝐷𝑦 = 𝑧)))))
429, 18, 27, 41vtocl3ga 3534 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐷𝑌 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))))
43423expa 1118 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐶𝑋) → (𝐷𝑌 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))))
4443impr 454 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  {cpr 4575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-sn 4574  df-pr 4576
This theorem is referenced by:  prneimg  4803  prneimg2  4804  pr1eqbg  4806  preqsnd  4808  preq12nebg  4812  opthprneg  4814  preleqALT  9507  pythagtriplem2  16729  pythagtrip  16746  upgrpredgv  29117  uhgr2edg  29186  usgredg2v  29205  2pthon3v  29921  opprb  47130  or2expropbi  47133  ich2exprop  47570  prsprel  47586  paireqne  47610  poprelb  47623  gpgvtxedg0  48162  gpgvtxedg1  48163
  Copyright terms: Public domain W3C validator