MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2adedgspth Structured version   Visualization version   GIF version

Theorem umgr2adedgspth 29968
Description: In a multigraph, two adjacent edges with different endvertices form a simple path of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.) (Revised by AV, 29-Jan-2021.)
Hypotheses
Ref Expression
umgr2adedgwlk.e 𝐸 = (Edg‘𝐺)
umgr2adedgwlk.i 𝐼 = (iEdg‘𝐺)
umgr2adedgwlk.f 𝐹 = ⟨“𝐽𝐾”⟩
umgr2adedgwlk.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
umgr2adedgwlk.g (𝜑𝐺 ∈ UMGraph)
umgr2adedgwlk.a (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
umgr2adedgwlk.j (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})
umgr2adedgwlk.k (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})
umgr2adedgspth.n (𝜑𝐴𝐶)
Assertion
Ref Expression
umgr2adedgspth (𝜑𝐹(SPaths‘𝐺)𝑃)

Proof of Theorem umgr2adedgspth
StepHypRef Expression
1 umgr2adedgwlk.p . 2 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2 umgr2adedgwlk.f . 2 𝐹 = ⟨“𝐽𝐾”⟩
3 umgr2adedgwlk.g . . . . 5 (𝜑𝐺 ∈ UMGraph)
4 umgr2adedgwlk.a . . . . 5 (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
5 3anass 1095 . . . . 5 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
63, 4, 5sylanbrc 583 . . . 4 (𝜑 → (𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
7 umgr2adedgwlk.e . . . . 5 𝐸 = (Edg‘𝐺)
87umgr2adedgwlklem 29964 . . . 4 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴𝐵𝐵𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
96, 8syl 17 . . 3 (𝜑 → ((𝐴𝐵𝐵𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
109simprd 495 . 2 (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
119simpld 494 . 2 (𝜑 → (𝐴𝐵𝐵𝐶))
12 ssid 4006 . . . 4 {𝐴, 𝐵} ⊆ {𝐴, 𝐵}
13 umgr2adedgwlk.j . . . 4 (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})
1412, 13sseqtrrid 4027 . . 3 (𝜑 → {𝐴, 𝐵} ⊆ (𝐼𝐽))
15 ssid 4006 . . . 4 {𝐵, 𝐶} ⊆ {𝐵, 𝐶}
16 umgr2adedgwlk.k . . . 4 (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})
1715, 16sseqtrrid 4027 . . 3 (𝜑 → {𝐵, 𝐶} ⊆ (𝐼𝐾))
1814, 17jca 511 . 2 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
19 eqid 2737 . 2 (Vtx‘𝐺) = (Vtx‘𝐺)
20 umgr2adedgwlk.i . 2 𝐼 = (iEdg‘𝐺)
21 fveq2 6906 . . . . . . . . 9 (𝐾 = 𝐽 → (𝐼𝐾) = (𝐼𝐽))
2221eqcoms 2745 . . . . . . . 8 (𝐽 = 𝐾 → (𝐼𝐾) = (𝐼𝐽))
2322eqeq1d 2739 . . . . . . 7 (𝐽 = 𝐾 → ((𝐼𝐾) = {𝐵, 𝐶} ↔ (𝐼𝐽) = {𝐵, 𝐶}))
24 eqtr2 2761 . . . . . . . 8 (((𝐼𝐽) = {𝐵, 𝐶} ∧ (𝐼𝐽) = {𝐴, 𝐵}) → {𝐵, 𝐶} = {𝐴, 𝐵})
2524ex 412 . . . . . . 7 ((𝐼𝐽) = {𝐵, 𝐶} → ((𝐼𝐽) = {𝐴, 𝐵} → {𝐵, 𝐶} = {𝐴, 𝐵}))
2623, 25biimtrdi 253 . . . . . 6 (𝐽 = 𝐾 → ((𝐼𝐾) = {𝐵, 𝐶} → ((𝐼𝐽) = {𝐴, 𝐵} → {𝐵, 𝐶} = {𝐴, 𝐵})))
2726com13 88 . . . . 5 ((𝐼𝐽) = {𝐴, 𝐵} → ((𝐼𝐾) = {𝐵, 𝐶} → (𝐽 = 𝐾 → {𝐵, 𝐶} = {𝐴, 𝐵})))
2813, 16, 27sylc 65 . . . 4 (𝜑 → (𝐽 = 𝐾 → {𝐵, 𝐶} = {𝐴, 𝐵}))
29 eqcom 2744 . . . . . 6 ({𝐵, 𝐶} = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = {𝐵, 𝐶})
30 prcom 4732 . . . . . . 7 {𝐵, 𝐶} = {𝐶, 𝐵}
3130eqeq2i 2750 . . . . . 6 ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ {𝐴, 𝐵} = {𝐶, 𝐵})
3229, 31bitri 275 . . . . 5 ({𝐵, 𝐶} = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = {𝐶, 𝐵})
3319, 7umgrpredgv 29157 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
3433simpld 494 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 ∈ (Vtx‘𝐺))
3534ex 412 . . . . . . . . 9 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸𝐴 ∈ (Vtx‘𝐺)))
3619, 7umgrpredgv 29157 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ {𝐵, 𝐶} ∈ 𝐸) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
3736simprd 495 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ {𝐵, 𝐶} ∈ 𝐸) → 𝐶 ∈ (Vtx‘𝐺))
3837ex 412 . . . . . . . . 9 (𝐺 ∈ UMGraph → ({𝐵, 𝐶} ∈ 𝐸𝐶 ∈ (Vtx‘𝐺)))
3935, 38anim12d 609 . . . . . . . 8 (𝐺 ∈ UMGraph → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
403, 4, 39sylc 65 . . . . . . 7 (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
41 preqr1g 4852 . . . . . . 7 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → ({𝐴, 𝐵} = {𝐶, 𝐵} → 𝐴 = 𝐶))
4240, 41syl 17 . . . . . 6 (𝜑 → ({𝐴, 𝐵} = {𝐶, 𝐵} → 𝐴 = 𝐶))
43 umgr2adedgspth.n . . . . . 6 (𝜑𝐴𝐶)
44 eqneqall 2951 . . . . . 6 (𝐴 = 𝐶 → (𝐴𝐶𝐽𝐾))
4542, 43, 44syl6ci 71 . . . . 5 (𝜑 → ({𝐴, 𝐵} = {𝐶, 𝐵} → 𝐽𝐾))
4632, 45biimtrid 242 . . . 4 (𝜑 → ({𝐵, 𝐶} = {𝐴, 𝐵} → 𝐽𝐾))
4728, 46syld 47 . . 3 (𝜑 → (𝐽 = 𝐾𝐽𝐾))
48 neqne 2948 . . 3 𝐽 = 𝐾𝐽𝐾)
4947, 48pm2.61d1 180 . 2 (𝜑𝐽𝐾)
501, 2, 10, 11, 18, 19, 20, 49, 432spthd 29961 1 (𝜑𝐹(SPaths‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wss 3951  {cpr 4628   class class class wbr 5143  cfv 6561  ⟨“cs2 14880  ⟨“cs3 14881  Vtxcvtx 29013  iEdgciedg 29014  Edgcedg 29064  UMGraphcumgr 29098  SPathscspths 29731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-s2 14887  df-s3 14888  df-edg 29065  df-umgr 29100  df-wlks 29617  df-trls 29710  df-spths 29735
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator