MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2adedgspth Structured version   Visualization version   GIF version

Theorem umgr2adedgspth 27734
Description: In a multigraph, two adjacent edges with different endvertices form a simple path of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.) (Revised by AV, 29-Jan-2021.)
Hypotheses
Ref Expression
umgr2adedgwlk.e 𝐸 = (Edg‘𝐺)
umgr2adedgwlk.i 𝐼 = (iEdg‘𝐺)
umgr2adedgwlk.f 𝐹 = ⟨“𝐽𝐾”⟩
umgr2adedgwlk.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
umgr2adedgwlk.g (𝜑𝐺 ∈ UMGraph)
umgr2adedgwlk.a (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
umgr2adedgwlk.j (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})
umgr2adedgwlk.k (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})
umgr2adedgspth.n (𝜑𝐴𝐶)
Assertion
Ref Expression
umgr2adedgspth (𝜑𝐹(SPaths‘𝐺)𝑃)

Proof of Theorem umgr2adedgspth
StepHypRef Expression
1 umgr2adedgwlk.p . 2 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2 umgr2adedgwlk.f . 2 𝐹 = ⟨“𝐽𝐾”⟩
3 umgr2adedgwlk.g . . . . 5 (𝜑𝐺 ∈ UMGraph)
4 umgr2adedgwlk.a . . . . 5 (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
5 3anass 1092 . . . . 5 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
63, 4, 5sylanbrc 586 . . . 4 (𝜑 → (𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
7 umgr2adedgwlk.e . . . . 5 𝐸 = (Edg‘𝐺)
87umgr2adedgwlklem 27730 . . . 4 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴𝐵𝐵𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
96, 8syl 17 . . 3 (𝜑 → ((𝐴𝐵𝐵𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
109simprd 499 . 2 (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
119simpld 498 . 2 (𝜑 → (𝐴𝐵𝐵𝐶))
12 ssid 3937 . . . 4 {𝐴, 𝐵} ⊆ {𝐴, 𝐵}
13 umgr2adedgwlk.j . . . 4 (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})
1412, 13sseqtrrid 3968 . . 3 (𝜑 → {𝐴, 𝐵} ⊆ (𝐼𝐽))
15 ssid 3937 . . . 4 {𝐵, 𝐶} ⊆ {𝐵, 𝐶}
16 umgr2adedgwlk.k . . . 4 (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})
1715, 16sseqtrrid 3968 . . 3 (𝜑 → {𝐵, 𝐶} ⊆ (𝐼𝐾))
1814, 17jca 515 . 2 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
19 eqid 2798 . 2 (Vtx‘𝐺) = (Vtx‘𝐺)
20 umgr2adedgwlk.i . 2 𝐼 = (iEdg‘𝐺)
21 fveq2 6645 . . . . . . . . 9 (𝐾 = 𝐽 → (𝐼𝐾) = (𝐼𝐽))
2221eqcoms 2806 . . . . . . . 8 (𝐽 = 𝐾 → (𝐼𝐾) = (𝐼𝐽))
2322eqeq1d 2800 . . . . . . 7 (𝐽 = 𝐾 → ((𝐼𝐾) = {𝐵, 𝐶} ↔ (𝐼𝐽) = {𝐵, 𝐶}))
24 eqtr2 2819 . . . . . . . 8 (((𝐼𝐽) = {𝐵, 𝐶} ∧ (𝐼𝐽) = {𝐴, 𝐵}) → {𝐵, 𝐶} = {𝐴, 𝐵})
2524ex 416 . . . . . . 7 ((𝐼𝐽) = {𝐵, 𝐶} → ((𝐼𝐽) = {𝐴, 𝐵} → {𝐵, 𝐶} = {𝐴, 𝐵}))
2623, 25syl6bi 256 . . . . . 6 (𝐽 = 𝐾 → ((𝐼𝐾) = {𝐵, 𝐶} → ((𝐼𝐽) = {𝐴, 𝐵} → {𝐵, 𝐶} = {𝐴, 𝐵})))
2726com13 88 . . . . 5 ((𝐼𝐽) = {𝐴, 𝐵} → ((𝐼𝐾) = {𝐵, 𝐶} → (𝐽 = 𝐾 → {𝐵, 𝐶} = {𝐴, 𝐵})))
2813, 16, 27sylc 65 . . . 4 (𝜑 → (𝐽 = 𝐾 → {𝐵, 𝐶} = {𝐴, 𝐵}))
29 eqcom 2805 . . . . . 6 ({𝐵, 𝐶} = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = {𝐵, 𝐶})
30 prcom 4628 . . . . . . 7 {𝐵, 𝐶} = {𝐶, 𝐵}
3130eqeq2i 2811 . . . . . 6 ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ {𝐴, 𝐵} = {𝐶, 𝐵})
3229, 31bitri 278 . . . . 5 ({𝐵, 𝐶} = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = {𝐶, 𝐵})
3319, 7umgrpredgv 26933 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
3433simpld 498 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 ∈ (Vtx‘𝐺))
3534ex 416 . . . . . . . . 9 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸𝐴 ∈ (Vtx‘𝐺)))
3619, 7umgrpredgv 26933 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ {𝐵, 𝐶} ∈ 𝐸) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
3736simprd 499 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ {𝐵, 𝐶} ∈ 𝐸) → 𝐶 ∈ (Vtx‘𝐺))
3837ex 416 . . . . . . . . 9 (𝐺 ∈ UMGraph → ({𝐵, 𝐶} ∈ 𝐸𝐶 ∈ (Vtx‘𝐺)))
3935, 38anim12d 611 . . . . . . . 8 (𝐺 ∈ UMGraph → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
403, 4, 39sylc 65 . . . . . . 7 (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
41 preqr1g 4743 . . . . . . 7 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → ({𝐴, 𝐵} = {𝐶, 𝐵} → 𝐴 = 𝐶))
4240, 41syl 17 . . . . . 6 (𝜑 → ({𝐴, 𝐵} = {𝐶, 𝐵} → 𝐴 = 𝐶))
43 umgr2adedgspth.n . . . . . 6 (𝜑𝐴𝐶)
44 eqneqall 2998 . . . . . 6 (𝐴 = 𝐶 → (𝐴𝐶𝐽𝐾))
4542, 43, 44syl6ci 71 . . . . 5 (𝜑 → ({𝐴, 𝐵} = {𝐶, 𝐵} → 𝐽𝐾))
4632, 45syl5bi 245 . . . 4 (𝜑 → ({𝐵, 𝐶} = {𝐴, 𝐵} → 𝐽𝐾))
4728, 46syld 47 . . 3 (𝜑 → (𝐽 = 𝐾𝐽𝐾))
48 neqne 2995 . . 3 𝐽 = 𝐾𝐽𝐾)
4947, 48pm2.61d1 183 . 2 (𝜑𝐽𝐾)
501, 2, 10, 11, 18, 19, 20, 49, 432spthd 27727 1 (𝜑𝐹(SPaths‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wss 3881  {cpr 4527   class class class wbr 5030  cfv 6324  ⟨“cs2 14194  ⟨“cs3 14195  Vtxcvtx 26789  iEdgciedg 26790  Edgcedg 26840  UMGraphcumgr 26874  SPathscspths 27502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-edg 26841  df-umgr 26876  df-wlks 27389  df-trls 27482  df-spths 27506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator