MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2adedgspth Structured version   Visualization version   GIF version

Theorem umgr2adedgspth 27082
Description: In a multigraph, two adjacent edges with different endvertices form a simple path of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.) (Revised by AV, 29-Jan-2021.)
Hypotheses
Ref Expression
umgr2adedgwlk.e 𝐸 = (Edg‘𝐺)
umgr2adedgwlk.i 𝐼 = (iEdg‘𝐺)
umgr2adedgwlk.f 𝐹 = ⟨“𝐽𝐾”⟩
umgr2adedgwlk.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
umgr2adedgwlk.g (𝜑𝐺 ∈ UMGraph)
umgr2adedgwlk.a (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
umgr2adedgwlk.j (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})
umgr2adedgwlk.k (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})
umgr2adedgspth.n (𝜑𝐴𝐶)
Assertion
Ref Expression
umgr2adedgspth (𝜑𝐹(SPaths‘𝐺)𝑃)

Proof of Theorem umgr2adedgspth
StepHypRef Expression
1 umgr2adedgwlk.p . 2 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2 umgr2adedgwlk.f . 2 𝐹 = ⟨“𝐽𝐾”⟩
3 umgr2adedgwlk.g . . . . 5 (𝜑𝐺 ∈ UMGraph)
4 umgr2adedgwlk.a . . . . 5 (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
5 3anass 1109 . . . . 5 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
63, 4, 5sylanbrc 574 . . . 4 (𝜑 → (𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
7 umgr2adedgwlk.e . . . . 5 𝐸 = (Edg‘𝐺)
87umgr2adedgwlklem 27078 . . . 4 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴𝐵𝐵𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
96, 8syl 17 . . 3 (𝜑 → ((𝐴𝐵𝐵𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
109simprd 485 . 2 (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
119simpld 484 . 2 (𝜑 → (𝐴𝐵𝐵𝐶))
12 ssid 3814 . . . 4 {𝐴, 𝐵} ⊆ {𝐴, 𝐵}
13 umgr2adedgwlk.j . . . 4 (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})
1412, 13syl5sseqr 3845 . . 3 (𝜑 → {𝐴, 𝐵} ⊆ (𝐼𝐽))
15 ssid 3814 . . . 4 {𝐵, 𝐶} ⊆ {𝐵, 𝐶}
16 umgr2adedgwlk.k . . . 4 (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})
1715, 16syl5sseqr 3845 . . 3 (𝜑 → {𝐵, 𝐶} ⊆ (𝐼𝐾))
1814, 17jca 503 . 2 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
19 eqid 2802 . 2 (Vtx‘𝐺) = (Vtx‘𝐺)
20 umgr2adedgwlk.i . 2 𝐼 = (iEdg‘𝐺)
21 fveq2 6402 . . . . . . . . 9 (𝐾 = 𝐽 → (𝐼𝐾) = (𝐼𝐽))
2221eqcoms 2810 . . . . . . . 8 (𝐽 = 𝐾 → (𝐼𝐾) = (𝐼𝐽))
2322eqeq1d 2804 . . . . . . 7 (𝐽 = 𝐾 → ((𝐼𝐾) = {𝐵, 𝐶} ↔ (𝐼𝐽) = {𝐵, 𝐶}))
24 eqtr2 2822 . . . . . . . 8 (((𝐼𝐽) = {𝐵, 𝐶} ∧ (𝐼𝐽) = {𝐴, 𝐵}) → {𝐵, 𝐶} = {𝐴, 𝐵})
2524ex 399 . . . . . . 7 ((𝐼𝐽) = {𝐵, 𝐶} → ((𝐼𝐽) = {𝐴, 𝐵} → {𝐵, 𝐶} = {𝐴, 𝐵}))
2623, 25syl6bi 244 . . . . . 6 (𝐽 = 𝐾 → ((𝐼𝐾) = {𝐵, 𝐶} → ((𝐼𝐽) = {𝐴, 𝐵} → {𝐵, 𝐶} = {𝐴, 𝐵})))
2726com13 88 . . . . 5 ((𝐼𝐽) = {𝐴, 𝐵} → ((𝐼𝐾) = {𝐵, 𝐶} → (𝐽 = 𝐾 → {𝐵, 𝐶} = {𝐴, 𝐵})))
2813, 16, 27sylc 65 . . . 4 (𝜑 → (𝐽 = 𝐾 → {𝐵, 𝐶} = {𝐴, 𝐵}))
29 eqcom 2809 . . . . . 6 ({𝐵, 𝐶} = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = {𝐵, 𝐶})
30 prcom 4452 . . . . . . 7 {𝐵, 𝐶} = {𝐶, 𝐵}
3130eqeq2i 2814 . . . . . 6 ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ {𝐴, 𝐵} = {𝐶, 𝐵})
3229, 31bitri 266 . . . . 5 ({𝐵, 𝐶} = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = {𝐶, 𝐵})
3319, 7umgrpredgv 26244 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
3433simpld 484 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 ∈ (Vtx‘𝐺))
3534ex 399 . . . . . . . . 9 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸𝐴 ∈ (Vtx‘𝐺)))
3619, 7umgrpredgv 26244 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ {𝐵, 𝐶} ∈ 𝐸) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
3736simprd 485 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ {𝐵, 𝐶} ∈ 𝐸) → 𝐶 ∈ (Vtx‘𝐺))
3837ex 399 . . . . . . . . 9 (𝐺 ∈ UMGraph → ({𝐵, 𝐶} ∈ 𝐸𝐶 ∈ (Vtx‘𝐺)))
3935, 38anim12d 598 . . . . . . . 8 (𝐺 ∈ UMGraph → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
403, 4, 39sylc 65 . . . . . . 7 (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
41 preqr1g 4565 . . . . . . 7 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → ({𝐴, 𝐵} = {𝐶, 𝐵} → 𝐴 = 𝐶))
4240, 41syl 17 . . . . . 6 (𝜑 → ({𝐴, 𝐵} = {𝐶, 𝐵} → 𝐴 = 𝐶))
43 umgr2adedgspth.n . . . . . 6 (𝜑𝐴𝐶)
44 eqneqall 2985 . . . . . 6 (𝐴 = 𝐶 → (𝐴𝐶𝐽𝐾))
4542, 43, 44syl6ci 71 . . . . 5 (𝜑 → ({𝐴, 𝐵} = {𝐶, 𝐵} → 𝐽𝐾))
4632, 45syl5bi 233 . . . 4 (𝜑 → ({𝐵, 𝐶} = {𝐴, 𝐵} → 𝐽𝐾))
4728, 46syld 47 . . 3 (𝜑 → (𝐽 = 𝐾𝐽𝐾))
48 neqne 2982 . . 3 𝐽 = 𝐾𝐽𝐾)
4947, 48pm2.61d1 172 . 2 (𝜑𝐽𝐾)
501, 2, 10, 11, 18, 19, 20, 49, 432spthd 27075 1 (𝜑𝐹(SPaths‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1100   = wceq 1637  wcel 2155  wne 2974  wss 3763  {cpr 4366   class class class wbr 4837  cfv 6095  ⟨“cs2 13804  ⟨“cs3 13805  Vtxcvtx 26082  iEdgciedg 26083  Edgcedg 26147  UMGraphcumgr 26184  SPathscspths 26831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-rep 4957  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173  ax-cnex 10271  ax-resscn 10272  ax-1cn 10273  ax-icn 10274  ax-addcl 10275  ax-addrcl 10276  ax-mulcl 10277  ax-mulrcl 10278  ax-mulcom 10279  ax-addass 10280  ax-mulass 10281  ax-distr 10282  ax-i2m1 10283  ax-1ne0 10284  ax-1rid 10285  ax-rnegex 10286  ax-rrecex 10287  ax-cnre 10288  ax-pre-lttri 10289  ax-pre-lttrn 10290  ax-pre-ltadd 10291  ax-pre-mulgt0 10292
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-ifp 1079  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-nel 3078  df-ral 3097  df-rex 3098  df-reu 3099  df-rmo 3100  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-pss 3779  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-tp 4369  df-op 4371  df-uni 4624  df-int 4663  df-iun 4707  df-br 4838  df-opab 4900  df-mpt 4917  df-tr 4940  df-id 5213  df-eprel 5218  df-po 5226  df-so 5227  df-fr 5264  df-we 5266  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-pred 5887  df-ord 5933  df-on 5934  df-lim 5935  df-suc 5936  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-riota 6829  df-ov 6871  df-oprab 6872  df-mpt2 6873  df-om 7290  df-1st 7392  df-2nd 7393  df-wrecs 7636  df-recs 7698  df-rdg 7736  df-1o 7790  df-oadd 7794  df-er 7973  df-map 8088  df-pm 8089  df-en 8187  df-dom 8188  df-sdom 8189  df-fin 8190  df-card 9042  df-cda 9269  df-pnf 10355  df-mnf 10356  df-xr 10357  df-ltxr 10358  df-le 10359  df-sub 10547  df-neg 10548  df-nn 11300  df-2 11358  df-3 11359  df-n0 11554  df-z 11638  df-uz 11899  df-fz 12544  df-fzo 12684  df-hash 13332  df-word 13504  df-concat 13506  df-s1 13507  df-s2 13811  df-s3 13812  df-edg 26148  df-umgr 26186  df-wlks 26717  df-trls 26811  df-spths 26835
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator