MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2adedgspth Structured version   Visualization version   GIF version

Theorem umgr2adedgspth 29885
Description: In a multigraph, two adjacent edges with different endvertices form a simple path of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.) (Revised by AV, 29-Jan-2021.)
Hypotheses
Ref Expression
umgr2adedgwlk.e 𝐸 = (Edg‘𝐺)
umgr2adedgwlk.i 𝐼 = (iEdg‘𝐺)
umgr2adedgwlk.f 𝐹 = ⟨“𝐽𝐾”⟩
umgr2adedgwlk.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
umgr2adedgwlk.g (𝜑𝐺 ∈ UMGraph)
umgr2adedgwlk.a (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
umgr2adedgwlk.j (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})
umgr2adedgwlk.k (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})
umgr2adedgspth.n (𝜑𝐴𝐶)
Assertion
Ref Expression
umgr2adedgspth (𝜑𝐹(SPaths‘𝐺)𝑃)

Proof of Theorem umgr2adedgspth
StepHypRef Expression
1 umgr2adedgwlk.p . 2 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2 umgr2adedgwlk.f . 2 𝐹 = ⟨“𝐽𝐾”⟩
3 umgr2adedgwlk.g . . . . 5 (𝜑𝐺 ∈ UMGraph)
4 umgr2adedgwlk.a . . . . 5 (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
5 3anass 1094 . . . . 5 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
63, 4, 5sylanbrc 583 . . . 4 (𝜑 → (𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
7 umgr2adedgwlk.e . . . . 5 𝐸 = (Edg‘𝐺)
87umgr2adedgwlklem 29881 . . . 4 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴𝐵𝐵𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
96, 8syl 17 . . 3 (𝜑 → ((𝐴𝐵𝐵𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
109simprd 495 . 2 (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
119simpld 494 . 2 (𝜑 → (𝐴𝐵𝐵𝐶))
12 ssid 3972 . . . 4 {𝐴, 𝐵} ⊆ {𝐴, 𝐵}
13 umgr2adedgwlk.j . . . 4 (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})
1412, 13sseqtrrid 3993 . . 3 (𝜑 → {𝐴, 𝐵} ⊆ (𝐼𝐽))
15 ssid 3972 . . . 4 {𝐵, 𝐶} ⊆ {𝐵, 𝐶}
16 umgr2adedgwlk.k . . . 4 (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})
1715, 16sseqtrrid 3993 . . 3 (𝜑 → {𝐵, 𝐶} ⊆ (𝐼𝐾))
1814, 17jca 511 . 2 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
19 eqid 2730 . 2 (Vtx‘𝐺) = (Vtx‘𝐺)
20 umgr2adedgwlk.i . 2 𝐼 = (iEdg‘𝐺)
21 fveq2 6861 . . . . . . . . 9 (𝐾 = 𝐽 → (𝐼𝐾) = (𝐼𝐽))
2221eqcoms 2738 . . . . . . . 8 (𝐽 = 𝐾 → (𝐼𝐾) = (𝐼𝐽))
2322eqeq1d 2732 . . . . . . 7 (𝐽 = 𝐾 → ((𝐼𝐾) = {𝐵, 𝐶} ↔ (𝐼𝐽) = {𝐵, 𝐶}))
24 eqtr2 2751 . . . . . . . 8 (((𝐼𝐽) = {𝐵, 𝐶} ∧ (𝐼𝐽) = {𝐴, 𝐵}) → {𝐵, 𝐶} = {𝐴, 𝐵})
2524ex 412 . . . . . . 7 ((𝐼𝐽) = {𝐵, 𝐶} → ((𝐼𝐽) = {𝐴, 𝐵} → {𝐵, 𝐶} = {𝐴, 𝐵}))
2623, 25biimtrdi 253 . . . . . 6 (𝐽 = 𝐾 → ((𝐼𝐾) = {𝐵, 𝐶} → ((𝐼𝐽) = {𝐴, 𝐵} → {𝐵, 𝐶} = {𝐴, 𝐵})))
2726com13 88 . . . . 5 ((𝐼𝐽) = {𝐴, 𝐵} → ((𝐼𝐾) = {𝐵, 𝐶} → (𝐽 = 𝐾 → {𝐵, 𝐶} = {𝐴, 𝐵})))
2813, 16, 27sylc 65 . . . 4 (𝜑 → (𝐽 = 𝐾 → {𝐵, 𝐶} = {𝐴, 𝐵}))
29 eqcom 2737 . . . . . 6 ({𝐵, 𝐶} = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = {𝐵, 𝐶})
30 prcom 4699 . . . . . . 7 {𝐵, 𝐶} = {𝐶, 𝐵}
3130eqeq2i 2743 . . . . . 6 ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ {𝐴, 𝐵} = {𝐶, 𝐵})
3229, 31bitri 275 . . . . 5 ({𝐵, 𝐶} = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = {𝐶, 𝐵})
3319, 7umgrpredgv 29074 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
3433simpld 494 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 ∈ (Vtx‘𝐺))
3534ex 412 . . . . . . . . 9 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸𝐴 ∈ (Vtx‘𝐺)))
3619, 7umgrpredgv 29074 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ {𝐵, 𝐶} ∈ 𝐸) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
3736simprd 495 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ {𝐵, 𝐶} ∈ 𝐸) → 𝐶 ∈ (Vtx‘𝐺))
3837ex 412 . . . . . . . . 9 (𝐺 ∈ UMGraph → ({𝐵, 𝐶} ∈ 𝐸𝐶 ∈ (Vtx‘𝐺)))
3935, 38anim12d 609 . . . . . . . 8 (𝐺 ∈ UMGraph → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
403, 4, 39sylc 65 . . . . . . 7 (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
41 preqr1g 4819 . . . . . . 7 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → ({𝐴, 𝐵} = {𝐶, 𝐵} → 𝐴 = 𝐶))
4240, 41syl 17 . . . . . 6 (𝜑 → ({𝐴, 𝐵} = {𝐶, 𝐵} → 𝐴 = 𝐶))
43 umgr2adedgspth.n . . . . . 6 (𝜑𝐴𝐶)
44 eqneqall 2937 . . . . . 6 (𝐴 = 𝐶 → (𝐴𝐶𝐽𝐾))
4542, 43, 44syl6ci 71 . . . . 5 (𝜑 → ({𝐴, 𝐵} = {𝐶, 𝐵} → 𝐽𝐾))
4632, 45biimtrid 242 . . . 4 (𝜑 → ({𝐵, 𝐶} = {𝐴, 𝐵} → 𝐽𝐾))
4728, 46syld 47 . . 3 (𝜑 → (𝐽 = 𝐾𝐽𝐾))
48 neqne 2934 . . 3 𝐽 = 𝐾𝐽𝐾)
4947, 48pm2.61d1 180 . 2 (𝜑𝐽𝐾)
501, 2, 10, 11, 18, 19, 20, 49, 432spthd 29878 1 (𝜑𝐹(SPaths‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wss 3917  {cpr 4594   class class class wbr 5110  cfv 6514  ⟨“cs2 14814  ⟨“cs3 14815  Vtxcvtx 28930  iEdgciedg 28931  Edgcedg 28981  UMGraphcumgr 29015  SPathscspths 29648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821  df-s3 14822  df-edg 28982  df-umgr 29017  df-wlks 29534  df-trls 29627  df-spths 29652
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator