MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prneprprc Structured version   Visualization version   GIF version

Theorem prneprprc 4853
Description: A proper unordered pair is not an improper unordered pair. (Contributed by AV, 13-Jun-2022.)
Assertion
Ref Expression
prneprprc (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐶, 𝐷})

Proof of Theorem prneprprc
StepHypRef Expression
1 prnesn 4852 . . 3 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ≠ {𝐷})
21adantr 480 . 2 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐷})
3 prprc1 4761 . . . 4 𝐶 ∈ V → {𝐶, 𝐷} = {𝐷})
43neeq2d 2993 . . 3 𝐶 ∈ V → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} ↔ {𝐴, 𝐵} ≠ {𝐷}))
54adantl 481 . 2 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ ¬ 𝐶 ∈ V) → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} ↔ {𝐴, 𝐵} ≠ {𝐷}))
62, 5mpbird 257 1 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐶, 𝐷})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1084  wcel 2098  wne 2932  Vcvv 3466  {csn 4620  {cpr 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-v 3468  df-dif 3943  df-un 3945  df-nul 4315  df-sn 4621  df-pr 4623
This theorem is referenced by:  preq12nebg  4855  opthprneg  4857
  Copyright terms: Public domain W3C validator