MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prneprprc Structured version   Visualization version   GIF version

Theorem prneprprc 4866
Description: A proper unordered pair is not an improper unordered pair. (Contributed by AV, 13-Jun-2022.)
Assertion
Ref Expression
prneprprc (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐶, 𝐷})

Proof of Theorem prneprprc
StepHypRef Expression
1 prnesn 4865 . . 3 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ≠ {𝐷})
21adantr 480 . 2 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐷})
3 prprc1 4770 . . . 4 𝐶 ∈ V → {𝐶, 𝐷} = {𝐷})
43neeq2d 2999 . . 3 𝐶 ∈ V → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} ↔ {𝐴, 𝐵} ≠ {𝐷}))
54adantl 481 . 2 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ ¬ 𝐶 ∈ V) → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} ↔ {𝐴, 𝐵} ≠ {𝐷}))
62, 5mpbird 257 1 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐶, 𝐷})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2106  wne 2938  Vcvv 3478  {csn 4631  {cpr 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-v 3480  df-dif 3966  df-un 3968  df-nul 4340  df-sn 4632  df-pr 4634
This theorem is referenced by:  preq12nebg  4868  opthprneg  4870
  Copyright terms: Public domain W3C validator