MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prneprprc Structured version   Visualization version   GIF version

Theorem prneprprc 4825
Description: A proper unordered pair is not an improper unordered pair. (Contributed by AV, 13-Jun-2022.)
Assertion
Ref Expression
prneprprc (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐶, 𝐷})

Proof of Theorem prneprprc
StepHypRef Expression
1 prnesn 4824 . . 3 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ≠ {𝐷})
21adantr 480 . 2 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐷})
3 prprc1 4729 . . . 4 𝐶 ∈ V → {𝐶, 𝐷} = {𝐷})
43neeq2d 2985 . . 3 𝐶 ∈ V → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} ↔ {𝐴, 𝐵} ≠ {𝐷}))
54adantl 481 . 2 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ ¬ 𝐶 ∈ V) → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} ↔ {𝐴, 𝐵} ≠ {𝐷}))
62, 5mpbird 257 1 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐶, 𝐷})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wne 2925  Vcvv 3447  {csn 4589  {cpr 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3449  df-dif 3917  df-un 3919  df-nul 4297  df-sn 4590  df-pr 4592
This theorem is referenced by:  preq12nebg  4827  opthprneg  4829
  Copyright terms: Public domain W3C validator