![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prneprprc | Structured version Visualization version GIF version |
Description: A proper unordered pair is not an improper unordered pair. (Contributed by AV, 13-Jun-2022.) |
Ref | Expression |
---|---|
prneprprc | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prnesn 4804 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≠ {𝐷}) | |
2 | 1 | adantr 481 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐷}) |
3 | prprc1 4713 | . . . 4 ⊢ (¬ 𝐶 ∈ V → {𝐶, 𝐷} = {𝐷}) | |
4 | 3 | neeq2d 3001 | . . 3 ⊢ (¬ 𝐶 ∈ V → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} ↔ {𝐴, 𝐵} ≠ {𝐷})) |
5 | 4 | adantl 482 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ ¬ 𝐶 ∈ V) → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} ↔ {𝐴, 𝐵} ≠ {𝐷})) |
6 | 2, 5 | mpbird 256 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2105 ≠ wne 2940 Vcvv 3441 {csn 4573 {cpr 4575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-v 3443 df-dif 3901 df-un 3903 df-nul 4270 df-sn 4574 df-pr 4576 |
This theorem is referenced by: preq12nebg 4807 opthprneg 4809 |
Copyright terms: Public domain | W3C validator |