| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeq2d | Structured version Visualization version GIF version | ||
| Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| neeq2d | ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eqeq2d 2745 | . 2 ⊢ (𝜑 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
| 3 | 2 | necon3bid 2975 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ≠ wne 2931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 df-ne 2932 |
| This theorem is referenced by: neeq2 2994 neeqtrd 3000 prneprprc 4843 fndifnfp 7179 f1ounsn 7275 f12dfv 7276 f13dfv 7277 resf1extb 7939 infpssrlem4 10329 sqrt2irr 16268 sdrgunit 20770 dsmmval 21721 dsmmbas2 21724 frlmbas 21742 dfconn2 23392 alexsublem 24017 uc1pval 26134 mon1pval 26136 dchrsum2 27267 noetainflem4 27740 isinag 28801 uhgrwkspthlem2 29721 usgr2wlkneq 29723 usgr2trlspth 29728 lfgrn1cycl 29772 uspgrn2crct 29775 2pthdlem1 29897 3pthdlem1 30130 numclwwlk2lem1 30342 eigorth 31804 eighmorth 31930 prmidlval 33406 mxidlval 33430 ressply1mon1p 33534 wlimeq12 35761 limsucncmpi 36387 poimirlem25 37593 poimirlem26 37594 pridlval 37981 maxidlval 37987 lshpset 38920 lduallkr3 39104 isatl 39241 cdlemk42 40884 prjspner1 42581 dffltz 42589 stoweidlem43 46003 nnfoctbdjlem 46415 |
| Copyright terms: Public domain | W3C validator |