Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neeq2d | Structured version Visualization version GIF version |
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neeq2d | ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqeq2d 2749 | . 2 ⊢ (𝜑 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
3 | 2 | necon3bid 2987 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-ne 2943 |
This theorem is referenced by: neeq2 3006 neeqtrd 3012 prneprprc 4788 fndifnfp 7030 f12dfv 7126 f13dfv 7127 infpssrlem4 9993 sqrt2irr 15886 dsmmval 20851 dsmmbas2 20854 frlmbas 20872 dfconn2 22478 alexsublem 23103 uc1pval 25209 mon1pval 25211 dchrsum2 26321 isinag 27103 uhgrwkspthlem2 28023 usgr2wlkneq 28025 usgr2trlspth 28030 lfgrn1cycl 28071 uspgrn2crct 28074 2pthdlem1 28196 3pthdlem1 28429 numclwwlk2lem1 28641 eigorth 30101 eighmorth 30227 prmidlval 31514 mxidlval 31535 wlimeq12 33740 noetainflem4 33870 limsucncmpi 34561 poimirlem25 35729 poimirlem26 35730 pridlval 36118 maxidlval 36124 lshpset 36919 lduallkr3 37103 isatl 37240 cdlemk42 38882 prjspner1 40384 dffltz 40387 stoweidlem43 43474 nnfoctbdjlem 43883 |
Copyright terms: Public domain | W3C validator |