![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neeq2d | Structured version Visualization version GIF version |
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neeq2d | ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqeq2d 2744 | . 2 ⊢ (𝜑 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
3 | 2 | necon3bid 2986 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-ne 2942 |
This theorem is referenced by: neeq2 3005 neeqtrd 3011 prneprprc 4862 fndifnfp 7174 f12dfv 7271 f13dfv 7272 infpssrlem4 10301 sqrt2irr 16192 sdrgunit 20412 dsmmval 21289 dsmmbas2 21292 frlmbas 21310 dfconn2 22923 alexsublem 23548 uc1pval 25657 mon1pval 25659 dchrsum2 26771 noetainflem4 27243 isinag 28089 uhgrwkspthlem2 29011 usgr2wlkneq 29013 usgr2trlspth 29018 lfgrn1cycl 29059 uspgrn2crct 29062 2pthdlem1 29184 3pthdlem1 29417 numclwwlk2lem1 29629 eigorth 31091 eighmorth 31217 prmidlval 32555 mxidlval 32577 ressply1mon1p 32657 wlimeq12 34791 limsucncmpi 35330 poimirlem25 36513 poimirlem26 36514 pridlval 36901 maxidlval 36907 lshpset 37848 lduallkr3 38032 isatl 38169 cdlemk42 39812 prjspner1 41368 dffltz 41376 stoweidlem43 44759 nnfoctbdjlem 45171 |
Copyright terms: Public domain | W3C validator |