| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeq2d | Structured version Visualization version GIF version | ||
| Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| neeq2d | ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eqeq2d 2740 | . 2 ⊢ (𝜑 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
| 3 | 2 | necon3bid 2969 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: neeq2 2988 neeqtrd 2994 prneprprc 4815 fndifnfp 7116 f1ounsn 7213 f12dfv 7214 f13dfv 7215 resf1extb 7874 infpssrlem4 10219 sqrt2irr 16176 sdrgunit 20699 dsmmval 21659 dsmmbas2 21662 frlmbas 21680 dfconn2 23322 alexsublem 23947 uc1pval 26061 mon1pval 26063 dchrsum2 27195 noetainflem4 27668 isinag 28801 uhgrwkspthlem2 29717 usgr2wlkneq 29719 usgr2trlspth 29724 lfgrn1cycl 29768 uspgrn2crct 29771 2pthdlem1 29893 3pthdlem1 30126 numclwwlk2lem1 30338 eigorth 31800 eighmorth 31926 prmidlval 33384 mxidlval 33408 ressply1mon1p 33513 wlimeq12 35792 limsucncmpi 36418 poimirlem25 37624 poimirlem26 37625 pridlval 38012 maxidlval 38018 lshpset 38956 lduallkr3 39140 isatl 39277 cdlemk42 40920 prjspner1 42599 dffltz 42607 stoweidlem43 46025 nnfoctbdjlem 46437 |
| Copyright terms: Public domain | W3C validator |