| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeq2d | Structured version Visualization version GIF version | ||
| Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| neeq2d | ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eqeq2d 2747 | . 2 ⊢ (𝜑 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
| 3 | 2 | necon3bid 2977 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-ne 2934 |
| This theorem is referenced by: neeq2 2996 neeqtrd 3002 prneprprc 4842 fndifnfp 7173 f1ounsn 7270 f12dfv 7271 f13dfv 7272 resf1extb 7935 infpssrlem4 10325 sqrt2irr 16272 sdrgunit 20761 dsmmval 21699 dsmmbas2 21702 frlmbas 21720 dfconn2 23362 alexsublem 23987 uc1pval 26102 mon1pval 26104 dchrsum2 27236 noetainflem4 27709 isinag 28822 uhgrwkspthlem2 29741 usgr2wlkneq 29743 usgr2trlspth 29748 lfgrn1cycl 29792 uspgrn2crct 29795 2pthdlem1 29917 3pthdlem1 30150 numclwwlk2lem1 30362 eigorth 31824 eighmorth 31950 prmidlval 33457 mxidlval 33481 ressply1mon1p 33586 wlimeq12 35842 limsucncmpi 36468 poimirlem25 37674 poimirlem26 37675 pridlval 38062 maxidlval 38068 lshpset 39001 lduallkr3 39185 isatl 39322 cdlemk42 40965 prjspner1 42624 dffltz 42632 stoweidlem43 46052 nnfoctbdjlem 46464 |
| Copyright terms: Public domain | W3C validator |