MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neeq2d Structured version   Visualization version   GIF version

Theorem neeq2d 3001
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Wolf Lammen, 19-Nov-2019.)
Hypothesis
Ref Expression
neeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
neeq2d (𝜑 → (𝐶𝐴𝐶𝐵))

Proof of Theorem neeq2d
StepHypRef Expression
1 neeq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21eqeq2d 2743 . 2 (𝜑 → (𝐶 = 𝐴𝐶 = 𝐵))
32necon3bid 2985 1 (𝜑 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wne 2940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-cleq 2724  df-ne 2941
This theorem is referenced by:  neeq2  3004  neeqtrd  3010  prneprprc  4861  fndifnfp  7176  f12dfv  7273  f13dfv  7274  infpssrlem4  10303  sqrt2irr  16196  sdrgunit  20555  dsmmval  21508  dsmmbas2  21511  frlmbas  21529  dfconn2  23143  alexsublem  23768  uc1pval  25881  mon1pval  25883  dchrsum2  26995  noetainflem4  27467  isinag  28344  uhgrwkspthlem2  29266  usgr2wlkneq  29268  usgr2trlspth  29273  lfgrn1cycl  29314  uspgrn2crct  29317  2pthdlem1  29439  3pthdlem1  29672  numclwwlk2lem1  29884  eigorth  31346  eighmorth  31472  prmidlval  32817  mxidlval  32839  ressply1mon1p  32919  wlimeq12  35083  limsucncmpi  35633  poimirlem25  36816  poimirlem26  36817  pridlval  37204  maxidlval  37210  lshpset  38151  lduallkr3  38335  isatl  38472  cdlemk42  40115  prjspner1  41670  dffltz  41678  stoweidlem43  45058  nnfoctbdjlem  45470
  Copyright terms: Public domain W3C validator