![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neeq2d | Structured version Visualization version GIF version |
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neeq2d | ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqeq2d 2743 | . 2 ⊢ (𝜑 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
3 | 2 | necon3bid 2985 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-cleq 2724 df-ne 2941 |
This theorem is referenced by: neeq2 3004 neeqtrd 3010 prneprprc 4861 fndifnfp 7176 f12dfv 7273 f13dfv 7274 infpssrlem4 10303 sqrt2irr 16196 sdrgunit 20555 dsmmval 21508 dsmmbas2 21511 frlmbas 21529 dfconn2 23143 alexsublem 23768 uc1pval 25881 mon1pval 25883 dchrsum2 26995 noetainflem4 27467 isinag 28344 uhgrwkspthlem2 29266 usgr2wlkneq 29268 usgr2trlspth 29273 lfgrn1cycl 29314 uspgrn2crct 29317 2pthdlem1 29439 3pthdlem1 29672 numclwwlk2lem1 29884 eigorth 31346 eighmorth 31472 prmidlval 32817 mxidlval 32839 ressply1mon1p 32919 wlimeq12 35083 limsucncmpi 35633 poimirlem25 36816 poimirlem26 36817 pridlval 37204 maxidlval 37210 lshpset 38151 lduallkr3 38335 isatl 38472 cdlemk42 40115 prjspner1 41670 dffltz 41678 stoweidlem43 45058 nnfoctbdjlem 45470 |
Copyright terms: Public domain | W3C validator |