| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeq2d | Structured version Visualization version GIF version | ||
| Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| neeq2d | ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eqeq2d 2744 | . 2 ⊢ (𝜑 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
| 3 | 2 | necon3bid 2973 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ne 2930 |
| This theorem is referenced by: neeq2 2992 neeqtrd 2998 prneprprc 4812 fndifnfp 7116 f1ounsn 7212 f12dfv 7213 f13dfv 7214 resf1extb 7870 infpssrlem4 10204 sqrt2irr 16160 sdrgunit 20713 dsmmval 21673 dsmmbas2 21676 frlmbas 21694 dfconn2 23335 alexsublem 23960 uc1pval 26073 mon1pval 26075 dchrsum2 27207 noetainflem4 27680 isinag 28817 uhgrwkspthlem2 29734 usgr2wlkneq 29736 usgr2trlspth 29741 lfgrn1cycl 29785 uspgrn2crct 29788 2pthdlem1 29910 3pthdlem1 30146 numclwwlk2lem1 30358 eigorth 31820 eighmorth 31946 prmidlval 33409 mxidlval 33433 ressply1mon1p 33538 extdgfialglem1 33726 wlimeq12 35882 limsucncmpi 36510 poimirlem25 37706 poimirlem26 37707 pridlval 38094 maxidlval 38100 lshpset 39098 lduallkr3 39282 isatl 39419 cdlemk42 41061 prjspner1 42745 dffltz 42753 stoweidlem43 46166 nnfoctbdjlem 46578 |
| Copyright terms: Public domain | W3C validator |