![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neeq2d | Structured version Visualization version GIF version |
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neeq2d | ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqeq2d 2742 | . 2 ⊢ (𝜑 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
3 | 2 | necon3bid 2984 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ≠ wne 2939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-cleq 2723 df-ne 2940 |
This theorem is referenced by: neeq2 3003 neeqtrd 3009 prneprprc 4861 fndifnfp 7176 f12dfv 7274 f13dfv 7275 infpssrlem4 10307 sqrt2irr 16199 sdrgunit 20643 dsmmval 21599 dsmmbas2 21602 frlmbas 21620 dfconn2 23243 alexsublem 23868 uc1pval 25995 mon1pval 25997 dchrsum2 27115 noetainflem4 27587 isinag 28523 uhgrwkspthlem2 29445 usgr2wlkneq 29447 usgr2trlspth 29452 lfgrn1cycl 29493 uspgrn2crct 29496 2pthdlem1 29618 3pthdlem1 29851 numclwwlk2lem1 30063 eigorth 31525 eighmorth 31651 prmidlval 32996 mxidlval 33018 ressply1mon1p 33098 wlimeq12 35262 limsucncmpi 35796 poimirlem25 36979 poimirlem26 36980 pridlval 37367 maxidlval 37373 lshpset 38314 lduallkr3 38498 isatl 38635 cdlemk42 40278 prjspner1 41833 dffltz 41841 stoweidlem43 45220 nnfoctbdjlem 45632 |
Copyright terms: Public domain | W3C validator |