| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeq2d | Structured version Visualization version GIF version | ||
| Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| neeq2d | ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eqeq2d 2742 | . 2 ⊢ (𝜑 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
| 3 | 2 | necon3bid 2972 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ne 2929 |
| This theorem is referenced by: neeq2 2991 neeqtrd 2997 prneprprc 4813 fndifnfp 7110 f1ounsn 7206 f12dfv 7207 f13dfv 7208 resf1extb 7864 infpssrlem4 10197 sqrt2irr 16158 sdrgunit 20712 dsmmval 21672 dsmmbas2 21675 frlmbas 21693 dfconn2 23335 alexsublem 23960 uc1pval 26073 mon1pval 26075 dchrsum2 27207 noetainflem4 27680 isinag 28817 uhgrwkspthlem2 29733 usgr2wlkneq 29735 usgr2trlspth 29740 lfgrn1cycl 29784 uspgrn2crct 29787 2pthdlem1 29909 3pthdlem1 30142 numclwwlk2lem1 30354 eigorth 31816 eighmorth 31942 prmidlval 33400 mxidlval 33424 ressply1mon1p 33529 extdgfialglem1 33703 wlimeq12 35859 limsucncmpi 36485 poimirlem25 37691 poimirlem26 37692 pridlval 38079 maxidlval 38085 lshpset 39023 lduallkr3 39207 isatl 39344 cdlemk42 40986 prjspner1 42665 dffltz 42673 stoweidlem43 46087 nnfoctbdjlem 46499 |
| Copyright terms: Public domain | W3C validator |