![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neeq2d | Structured version Visualization version GIF version |
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neeq2d | ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqeq2d 2751 | . 2 ⊢ (𝜑 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
3 | 2 | necon3bid 2991 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ne 2947 |
This theorem is referenced by: neeq2 3010 neeqtrd 3016 prneprprc 4885 fndifnfp 7210 f12dfv 7309 f13dfv 7310 infpssrlem4 10375 sqrt2irr 16297 sdrgunit 20819 dsmmval 21777 dsmmbas2 21780 frlmbas 21798 dfconn2 23448 alexsublem 24073 uc1pval 26199 mon1pval 26201 dchrsum2 27330 noetainflem4 27803 isinag 28864 uhgrwkspthlem2 29790 usgr2wlkneq 29792 usgr2trlspth 29797 lfgrn1cycl 29838 uspgrn2crct 29841 2pthdlem1 29963 3pthdlem1 30196 numclwwlk2lem1 30408 eigorth 31870 eighmorth 31996 prmidlval 33430 mxidlval 33454 ressply1mon1p 33558 wlimeq12 35783 limsucncmpi 36411 poimirlem25 37605 poimirlem26 37606 pridlval 37993 maxidlval 37999 lshpset 38934 lduallkr3 39118 isatl 39255 cdlemk42 40898 prjspner1 42581 dffltz 42589 stoweidlem43 45964 nnfoctbdjlem 46376 |
Copyright terms: Public domain | W3C validator |