| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeq2d | Structured version Visualization version GIF version | ||
| Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| neeq2d | ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eqeq2d 2740 | . 2 ⊢ (𝜑 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
| 3 | 2 | necon3bid 2969 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: neeq2 2988 neeqtrd 2994 prneprprc 4825 fndifnfp 7150 f1ounsn 7247 f12dfv 7248 f13dfv 7249 resf1extb 7910 infpssrlem4 10259 sqrt2irr 16217 sdrgunit 20705 dsmmval 21643 dsmmbas2 21646 frlmbas 21664 dfconn2 23306 alexsublem 23931 uc1pval 26045 mon1pval 26047 dchrsum2 27179 noetainflem4 27652 isinag 28765 uhgrwkspthlem2 29684 usgr2wlkneq 29686 usgr2trlspth 29691 lfgrn1cycl 29735 uspgrn2crct 29738 2pthdlem1 29860 3pthdlem1 30093 numclwwlk2lem1 30305 eigorth 31767 eighmorth 31893 prmidlval 33408 mxidlval 33432 ressply1mon1p 33537 wlimeq12 35807 limsucncmpi 36433 poimirlem25 37639 poimirlem26 37640 pridlval 38027 maxidlval 38033 lshpset 38971 lduallkr3 39155 isatl 39292 cdlemk42 40935 prjspner1 42614 dffltz 42622 stoweidlem43 46041 nnfoctbdjlem 46453 |
| Copyright terms: Public domain | W3C validator |