Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neeq2d | Structured version Visualization version GIF version |
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neeq2d | ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqeq2d 2749 | . 2 ⊢ (𝜑 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
3 | 2 | necon3bid 2988 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-ne 2944 |
This theorem is referenced by: neeq2 3007 neeqtrd 3013 prneprprc 4791 fndifnfp 7048 f12dfv 7145 f13dfv 7146 infpssrlem4 10062 sqrt2irr 15958 dsmmval 20941 dsmmbas2 20944 frlmbas 20962 dfconn2 22570 alexsublem 23195 uc1pval 25304 mon1pval 25306 dchrsum2 26416 isinag 27199 uhgrwkspthlem2 28122 usgr2wlkneq 28124 usgr2trlspth 28129 lfgrn1cycl 28170 uspgrn2crct 28173 2pthdlem1 28295 3pthdlem1 28528 numclwwlk2lem1 28740 eigorth 30200 eighmorth 30326 prmidlval 31612 mxidlval 31633 wlimeq12 33813 noetainflem4 33943 limsucncmpi 34634 poimirlem25 35802 poimirlem26 35803 pridlval 36191 maxidlval 36197 lshpset 36992 lduallkr3 37176 isatl 37313 cdlemk42 38955 prjspner1 40463 dffltz 40471 stoweidlem43 43584 nnfoctbdjlem 43993 |
Copyright terms: Public domain | W3C validator |