Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neeq2d | Structured version Visualization version GIF version |
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
neeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neeq2d | ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqeq2d 2749 | . 2 ⊢ (𝜑 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
3 | 2 | necon3bid 2978 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐴 ↔ 𝐶 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1542 ≠ wne 2934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1787 df-cleq 2730 df-ne 2935 |
This theorem is referenced by: neeq2 2997 neeqtrd 3003 prneprprc 4746 fndifnfp 6948 f12dfv 7041 f13dfv 7042 infpssrlem4 9806 sqrt2irr 15694 dsmmval 20550 dsmmbas2 20553 frlmbas 20571 dfconn2 22170 alexsublem 22795 uc1pval 24892 mon1pval 24894 dchrsum2 26004 isinag 26784 uhgrwkspthlem2 27695 usgr2wlkneq 27697 usgr2trlspth 27702 lfgrn1cycl 27743 uspgrn2crct 27746 2pthdlem1 27868 3pthdlem1 28101 numclwwlk2lem1 28313 eigorth 29773 eighmorth 29899 prmidlval 31184 mxidlval 31205 wlimeq12 33424 noetainflem4 33584 limsucncmpi 34272 poimirlem25 35425 poimirlem26 35426 pridlval 35814 maxidlval 35820 lshpset 36615 lduallkr3 36799 isatl 36936 cdlemk42 38578 prjspner1 40040 dffltz 40043 stoweidlem43 43126 nnfoctbdjlem 43535 |
Copyright terms: Public domain | W3C validator |