Proof of Theorem preq12nebg
Step | Hyp | Ref
| Expression |
1 | | 3simpa 1147 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) |
2 | 1 | anim1i 615 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V))) |
3 | 2 | ancoms 459 |
. . . 4
⊢ (((𝐶 ∈ V ∧ 𝐷 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V))) |
4 | | preq12bg 4784 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
5 | 3, 4 | syl 17 |
. . 3
⊢ (((𝐶 ∈ V ∧ 𝐷 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
6 | 5 | ex 413 |
. 2
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))))) |
7 | | ianor 979 |
. . 3
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ (¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V)) |
8 | | prneprprc 4791 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}) |
9 | 8 | ancoms 459 |
. . . . . . 7
⊢ ((¬
𝐶 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}) |
10 | | eqneqall 2954 |
. . . . . . 7
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
11 | 9, 10 | syl5com 31 |
. . . . . 6
⊢ ((¬
𝐶 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
12 | | prneprprc 4791 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ ¬ 𝐷 ∈ V) → {𝐴, 𝐵} ≠ {𝐷, 𝐶}) |
13 | 12 | ancoms 459 |
. . . . . . 7
⊢ ((¬
𝐷 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → {𝐴, 𝐵} ≠ {𝐷, 𝐶}) |
14 | | prcom 4668 |
. . . . . . . . 9
⊢ {𝐶, 𝐷} = {𝐷, 𝐶} |
15 | 14 | eqeq2i 2751 |
. . . . . . . 8
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐴, 𝐵} = {𝐷, 𝐶}) |
16 | | eqneqall 2954 |
. . . . . . . 8
⊢ ({𝐴, 𝐵} = {𝐷, 𝐶} → ({𝐴, 𝐵} ≠ {𝐷, 𝐶} → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
17 | 15, 16 | sylbi 216 |
. . . . . . 7
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → ({𝐴, 𝐵} ≠ {𝐷, 𝐶} → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
18 | 13, 17 | syl5com 31 |
. . . . . 6
⊢ ((¬
𝐷 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
19 | 11, 18 | jaoian 954 |
. . . . 5
⊢ (((¬
𝐶 ∈ V ∨ ¬ 𝐷 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
20 | | preq12 4671 |
. . . . . 6
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
21 | | preq12 4671 |
. . . . . . 7
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐷, 𝐶}) |
22 | | prcom 4668 |
. . . . . . 7
⊢ {𝐷, 𝐶} = {𝐶, 𝐷} |
23 | 21, 22 | eqtrdi 2794 |
. . . . . 6
⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
24 | 20, 23 | jaoi 854 |
. . . . 5
⊢ (((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
25 | 19, 24 | impbid1 224 |
. . . 4
⊢ (((¬
𝐶 ∈ V ∨ ¬ 𝐷 ∈ V) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
26 | 25 | ex 413 |
. . 3
⊢ ((¬
𝐶 ∈ V ∨ ¬ 𝐷 ∈ V) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))))) |
27 | 7, 26 | sylbi 216 |
. 2
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))))) |
28 | 6, 27 | pm2.61i 182 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |