MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnesn Structured version   Visualization version   GIF version

Theorem prnesn 4787
Description: A proper unordered pair is not a (proper or improper) singleton. (Contributed by AV, 13-Jun-2022.)
Assertion
Ref Expression
prnesn ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ≠ {𝐶})

Proof of Theorem prnesn
StepHypRef Expression
1 eqtr3 2764 . . . 4 ((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)
21necon3ai 2967 . . 3 (𝐴𝐵 → ¬ (𝐴 = 𝐶𝐵 = 𝐶))
323ad2ant3 1133 . 2 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ¬ (𝐴 = 𝐶𝐵 = 𝐶))
4 simp1 1134 . . . 4 ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝐴𝑉)
5 simp2 1135 . . . 4 ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝐵𝑊)
64, 5preqsnd 4786 . . 3 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶𝐵 = 𝐶)))
76necon3abid 2979 . 2 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} ≠ {𝐶} ↔ ¬ (𝐴 = 𝐶𝐵 = 𝐶)))
83, 7mpbird 256 1 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ≠ {𝐶})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  {csn 4558  {cpr 4560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-sn 4559  df-pr 4561
This theorem is referenced by:  prneprprc  4788
  Copyright terms: Public domain W3C validator