MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnesn Structured version   Visualization version   GIF version

Theorem prnesn 4860
Description: A proper unordered pair is not a (proper or improper) singleton. (Contributed by AV, 13-Jun-2022.)
Assertion
Ref Expression
prnesn ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ≠ {𝐶})

Proof of Theorem prnesn
StepHypRef Expression
1 eqtr3 2757 . . . 4 ((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)
21necon3ai 2964 . . 3 (𝐴𝐵 → ¬ (𝐴 = 𝐶𝐵 = 𝐶))
323ad2ant3 1134 . 2 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ¬ (𝐴 = 𝐶𝐵 = 𝐶))
4 simp1 1135 . . . 4 ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝐴𝑉)
5 simp2 1136 . . . 4 ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝐵𝑊)
64, 5preqsnd 4859 . . 3 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶𝐵 = 𝐶)))
76necon3abid 2976 . 2 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} ≠ {𝐶} ↔ ¬ (𝐴 = 𝐶𝐵 = 𝐶)))
83, 7mpbird 257 1 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ≠ {𝐶})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  {csn 4628  {cpr 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-v 3475  df-dif 3951  df-un 3953  df-nul 4323  df-sn 4629  df-pr 4631
This theorem is referenced by:  prneprprc  4861  snnen2o  9243
  Copyright terms: Public domain W3C validator