![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prnesn | Structured version Visualization version GIF version |
Description: A proper unordered pair is not a (proper or improper) singleton. (Contributed by AV, 13-Jun-2022.) |
Ref | Expression |
---|---|
prnesn | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≠ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3 2753 | . . . 4 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) | |
2 | 1 | necon3ai 2960 | . . 3 ⊢ (𝐴 ≠ 𝐵 → ¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) |
3 | 2 | 3ad2ant3 1133 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) |
4 | simp1 1134 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝑉) | |
5 | simp2 1135 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑊) | |
6 | 4, 5 | preqsnd 4855 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
7 | 6 | necon3abid 2972 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} ≠ {𝐶} ↔ ¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
8 | 3, 7 | mpbird 257 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≠ {𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 {csn 4624 {cpr 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-v 3471 df-dif 3947 df-un 3949 df-nul 4319 df-sn 4625 df-pr 4627 |
This theorem is referenced by: prneprprc 4857 snnen2o 9255 |
Copyright terms: Public domain | W3C validator |