Proof of Theorem opthprneg
Step | Hyp | Ref
| Expression |
1 | | preq12bg 4790 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
2 | 1 | adantlr 713 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷)) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
3 | | idd 24 |
. . . . . . . 8
⊢ (𝐴 ≠ 𝐷 → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
4 | | df-ne 2942 |
. . . . . . . . . 10
⊢ (𝐴 ≠ 𝐷 ↔ ¬ 𝐴 = 𝐷) |
5 | | pm2.21 123 |
. . . . . . . . . 10
⊢ (¬
𝐴 = 𝐷 → (𝐴 = 𝐷 → (𝐵 = 𝐶 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) |
6 | 4, 5 | sylbi 216 |
. . . . . . . . 9
⊢ (𝐴 ≠ 𝐷 → (𝐴 = 𝐷 → (𝐵 = 𝐶 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) |
7 | 6 | impd 412 |
. . . . . . . 8
⊢ (𝐴 ≠ 𝐷 → ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
8 | 3, 7 | jaod 857 |
. . . . . . 7
⊢ (𝐴 ≠ 𝐷 → (((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
9 | | orc 865 |
. . . . . . 7
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
10 | 8, 9 | impbid1 224 |
. . . . . 6
⊢ (𝐴 ≠ 𝐷 → (((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
11 | 10 | adantl 483 |
. . . . 5
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷) → (((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
12 | 11 | ad2antlr 725 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷)) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
13 | 2, 12 | bitrd 279 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷)) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
14 | 13 | expcom 415 |
. 2
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) |
15 | | ianor 980 |
. . 3
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ (¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V)) |
16 | | simpl 484 |
. . . . . . . . . . 11
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷) → 𝐴 ≠ 𝐵) |
17 | 16 | anim2i 618 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷)) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐴 ≠ 𝐵)) |
18 | | df-3an 1089 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ↔ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐴 ≠ 𝐵)) |
19 | 17, 18 | sylibr 233 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷)) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) |
20 | | prneprprc 4797 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}) |
21 | 19, 20 | sylan 581 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷)) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}) |
22 | 21 | ancoms 460 |
. . . . . . 7
⊢ ((¬
𝐶 ∈ V ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷))) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}) |
23 | | eqneqall 2952 |
. . . . . . 7
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
24 | 22, 23 | syl5com 31 |
. . . . . 6
⊢ ((¬
𝐶 ∈ V ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷))) → ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
25 | | prneprprc 4797 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ ¬ 𝐷 ∈ V) → {𝐴, 𝐵} ≠ {𝐷, 𝐶}) |
26 | 19, 25 | sylan 581 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷)) ∧ ¬ 𝐷 ∈ V) → {𝐴, 𝐵} ≠ {𝐷, 𝐶}) |
27 | 26 | ancoms 460 |
. . . . . . 7
⊢ ((¬
𝐷 ∈ V ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷))) → {𝐴, 𝐵} ≠ {𝐷, 𝐶}) |
28 | | prcom 4672 |
. . . . . . . . 9
⊢ {𝐶, 𝐷} = {𝐷, 𝐶} |
29 | 28 | eqeq2i 2749 |
. . . . . . . 8
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐴, 𝐵} = {𝐷, 𝐶}) |
30 | | eqneqall 2952 |
. . . . . . . 8
⊢ ({𝐴, 𝐵} = {𝐷, 𝐶} → ({𝐴, 𝐵} ≠ {𝐷, 𝐶} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
31 | 29, 30 | sylbi 216 |
. . . . . . 7
⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → ({𝐴, 𝐵} ≠ {𝐷, 𝐶} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
32 | 27, 31 | syl5com 31 |
. . . . . 6
⊢ ((¬
𝐷 ∈ V ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷))) → ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
33 | 24, 32 | jaoian 955 |
. . . . 5
⊢ (((¬
𝐶 ∈ V ∨ ¬ 𝐷 ∈ V) ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷))) → ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
34 | | preq12 4675 |
. . . . 5
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
35 | 33, 34 | impbid1 224 |
. . . 4
⊢ (((¬
𝐶 ∈ V ∨ ¬ 𝐷 ∈ V) ∧ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷))) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
36 | 35 | ex 414 |
. . 3
⊢ ((¬
𝐶 ∈ V ∨ ¬ 𝐷 ∈ V) → (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) |
37 | 15, 36 | sylbi 216 |
. 2
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) |
38 | 14, 37 | pm2.61i 182 |
1
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |