Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthprneg Structured version   Visualization version   GIF version

Theorem opthprneg 4752
 Description: An unordered pair has the ordered pair property (compare opth 5336) under certain conditions. Variant of opthpr 4739 in closed form. (Contributed by AV, 13-Jun-2022.)
Assertion
Ref Expression
opthprneg (((𝐴𝑉𝐵𝑊) ∧ (𝐴𝐵𝐴𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem opthprneg
StepHypRef Expression
1 preq12bg 4741 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
21adantlr 714 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐴𝐵𝐴𝐷)) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
3 idd 24 . . . . . . . 8 (𝐴𝐷 → ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷)))
4 df-ne 2952 . . . . . . . . . 10 (𝐴𝐷 ↔ ¬ 𝐴 = 𝐷)
5 pm2.21 123 . . . . . . . . . 10 𝐴 = 𝐷 → (𝐴 = 𝐷 → (𝐵 = 𝐶 → (𝐴 = 𝐶𝐵 = 𝐷))))
64, 5sylbi 220 . . . . . . . . 9 (𝐴𝐷 → (𝐴 = 𝐷 → (𝐵 = 𝐶 → (𝐴 = 𝐶𝐵 = 𝐷))))
76impd 414 . . . . . . . 8 (𝐴𝐷 → ((𝐴 = 𝐷𝐵 = 𝐶) → (𝐴 = 𝐶𝐵 = 𝐷)))
83, 7jaod 856 . . . . . . 7 (𝐴𝐷 → (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) → (𝐴 = 𝐶𝐵 = 𝐷)))
9 orc 864 . . . . . . 7 ((𝐴 = 𝐶𝐵 = 𝐷) → ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))
108, 9impbid1 228 . . . . . 6 (𝐴𝐷 → (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
1110adantl 485 . . . . 5 ((𝐴𝐵𝐴𝐷) → (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
1211ad2antlr 726 . . . 4 ((((𝐴𝑉𝐵𝑊) ∧ (𝐴𝐵𝐴𝐷)) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
132, 12bitrd 282 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ (𝐴𝐵𝐴𝐷)) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
1413expcom 417 . 2 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (((𝐴𝑉𝐵𝑊) ∧ (𝐴𝐵𝐴𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐵 = 𝐷))))
15 ianor 979 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ (¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V))
16 simpl 486 . . . . . . . . . . 11 ((𝐴𝐵𝐴𝐷) → 𝐴𝐵)
1716anim2i 619 . . . . . . . . . 10 (((𝐴𝑉𝐵𝑊) ∧ (𝐴𝐵𝐴𝐷)) → ((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵))
18 df-3an 1086 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑊𝐴𝐵) ↔ ((𝐴𝑉𝐵𝑊) ∧ 𝐴𝐵))
1917, 18sylibr 237 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊) ∧ (𝐴𝐵𝐴𝐷)) → (𝐴𝑉𝐵𝑊𝐴𝐵))
20 prneprprc 4748 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐶, 𝐷})
2119, 20sylan 583 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ (𝐴𝐵𝐴𝐷)) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐶, 𝐷})
2221ancoms 462 . . . . . . 7 ((¬ 𝐶 ∈ V ∧ ((𝐴𝑉𝐵𝑊) ∧ (𝐴𝐵𝐴𝐷))) → {𝐴, 𝐵} ≠ {𝐶, 𝐷})
23 eqneqall 2962 . . . . . . 7 ({𝐴, 𝐵} = {𝐶, 𝐷} → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} → (𝐴 = 𝐶𝐵 = 𝐷)))
2422, 23syl5com 31 . . . . . 6 ((¬ 𝐶 ∈ V ∧ ((𝐴𝑉𝐵𝑊) ∧ (𝐴𝐵𝐴𝐷))) → ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶𝐵 = 𝐷)))
25 prneprprc 4748 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ ¬ 𝐷 ∈ V) → {𝐴, 𝐵} ≠ {𝐷, 𝐶})
2619, 25sylan 583 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊) ∧ (𝐴𝐵𝐴𝐷)) ∧ ¬ 𝐷 ∈ V) → {𝐴, 𝐵} ≠ {𝐷, 𝐶})
2726ancoms 462 . . . . . . 7 ((¬ 𝐷 ∈ V ∧ ((𝐴𝑉𝐵𝑊) ∧ (𝐴𝐵𝐴𝐷))) → {𝐴, 𝐵} ≠ {𝐷, 𝐶})
28 prcom 4625 . . . . . . . . 9 {𝐶, 𝐷} = {𝐷, 𝐶}
2928eqeq2i 2771 . . . . . . . 8 ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐴, 𝐵} = {𝐷, 𝐶})
30 eqneqall 2962 . . . . . . . 8 ({𝐴, 𝐵} = {𝐷, 𝐶} → ({𝐴, 𝐵} ≠ {𝐷, 𝐶} → (𝐴 = 𝐶𝐵 = 𝐷)))
3129, 30sylbi 220 . . . . . . 7 ({𝐴, 𝐵} = {𝐶, 𝐷} → ({𝐴, 𝐵} ≠ {𝐷, 𝐶} → (𝐴 = 𝐶𝐵 = 𝐷)))
3227, 31syl5com 31 . . . . . 6 ((¬ 𝐷 ∈ V ∧ ((𝐴𝑉𝐵𝑊) ∧ (𝐴𝐵𝐴𝐷))) → ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶𝐵 = 𝐷)))
3324, 32jaoian 954 . . . . 5 (((¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V) ∧ ((𝐴𝑉𝐵𝑊) ∧ (𝐴𝐵𝐴𝐷))) → ({𝐴, 𝐵} = {𝐶, 𝐷} → (𝐴 = 𝐶𝐵 = 𝐷)))
34 preq12 4628 . . . . 5 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷})
3533, 34impbid1 228 . . . 4 (((¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V) ∧ ((𝐴𝑉𝐵𝑊) ∧ (𝐴𝐵𝐴𝐷))) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
3635ex 416 . . 3 ((¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V) → (((𝐴𝑉𝐵𝑊) ∧ (𝐴𝐵𝐴𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐵 = 𝐷))))
3715, 36sylbi 220 . 2 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (((𝐴𝑉𝐵𝑊) ∧ (𝐴𝐵𝐴𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐵 = 𝐷))))
3814, 37pm2.61i 185 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐴𝐵𝐴𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  Vcvv 3409  {cpr 4524 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-v 3411  df-dif 3861  df-un 3863  df-nul 4226  df-sn 4523  df-pr 4525 This theorem is referenced by:  linds2eq  31096
 Copyright terms: Public domain W3C validator