![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preqsn | Structured version Visualization version GIF version |
Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) (Revised by AV, 12-Jun-2022.) |
Ref | Expression |
---|---|
preqsn.1 | ⊢ 𝐴 ∈ V |
preqsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
preqsn | ⊢ ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preqsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | id 22 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
3 | preqsn.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
5 | 2, 4 | preqsnd 4883 | . . 3 ⊢ (𝐴 ∈ V → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
6 | 1, 5 | ax-mp 5 | . 2 ⊢ ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) |
7 | eqeq2 2752 | . . 3 ⊢ (𝐵 = 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 = 𝐶)) | |
8 | 7 | pm5.32ri 575 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) |
9 | 6, 8 | bitr4i 278 | 1 ⊢ ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-nul 4353 df-sn 4649 df-pr 4651 |
This theorem is referenced by: opeqsng 5522 propeqop 5526 propssopi 5527 relop 5875 hash2prde 14519 symg2bas 19434 |
Copyright terms: Public domain | W3C validator |