MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preqsn Structured version   Visualization version   GIF version

Theorem preqsn 4811
Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) (Revised by AV, 12-Jun-2022.)
Hypotheses
Ref Expression
preqsn.1 𝐴 ∈ V
preqsn.2 𝐵 ∈ V
Assertion
Ref Expression
preqsn ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵𝐵 = 𝐶))

Proof of Theorem preqsn
StepHypRef Expression
1 preqsn.1 . . 3 𝐴 ∈ V
2 id 22 . . . 4 (𝐴 ∈ V → 𝐴 ∈ V)
3 preqsn.2 . . . . 5 𝐵 ∈ V
43a1i 11 . . . 4 (𝐴 ∈ V → 𝐵 ∈ V)
52, 4preqsnd 4808 . . 3 (𝐴 ∈ V → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶𝐵 = 𝐶)))
61, 5ax-mp 5 . 2 ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶𝐵 = 𝐶))
7 eqeq2 2743 . . 3 (𝐵 = 𝐶 → (𝐴 = 𝐵𝐴 = 𝐶))
87pm5.32ri 575 . 2 ((𝐴 = 𝐵𝐵 = 𝐶) ↔ (𝐴 = 𝐶𝐵 = 𝐶))
96, 8bitr4i 278 1 ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4573  {cpr 4575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3900  df-un 3902  df-nul 4281  df-sn 4574  df-pr 4576
This theorem is referenced by:  opeqsng  5441  propeqop  5445  propssopi  5446  relop  5789  hash2prde  14377  symg2bas  19305
  Copyright terms: Public domain W3C validator