MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preqsn Structured version   Visualization version   GIF version

Theorem preqsn 4838
Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) (Revised by AV, 12-Jun-2022.)
Hypotheses
Ref Expression
preqsn.1 𝐴 ∈ V
preqsn.2 𝐵 ∈ V
Assertion
Ref Expression
preqsn ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵𝐵 = 𝐶))

Proof of Theorem preqsn
StepHypRef Expression
1 preqsn.1 . . 3 𝐴 ∈ V
2 id 22 . . . 4 (𝐴 ∈ V → 𝐴 ∈ V)
3 preqsn.2 . . . . 5 𝐵 ∈ V
43a1i 11 . . . 4 (𝐴 ∈ V → 𝐵 ∈ V)
52, 4preqsnd 4835 . . 3 (𝐴 ∈ V → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶𝐵 = 𝐶)))
61, 5ax-mp 5 . 2 ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶𝐵 = 𝐶))
7 eqeq2 2747 . . 3 (𝐵 = 𝐶 → (𝐴 = 𝐵𝐴 = 𝐶))
87pm5.32ri 575 . 2 ((𝐴 = 𝐵𝐵 = 𝐶) ↔ (𝐴 = 𝐶𝐵 = 𝐶))
96, 8bitr4i 278 1 ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  {csn 4601  {cpr 4603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-v 3461  df-dif 3929  df-un 3931  df-nul 4309  df-sn 4602  df-pr 4604
This theorem is referenced by:  opeqsng  5478  propeqop  5482  propssopi  5483  relop  5830  hash2prde  14488  symg2bas  19374
  Copyright terms: Public domain W3C validator