| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3abid | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 21-Mar-2007.) |
| Ref | Expression |
|---|---|
| necon3abid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| necon3abid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3abid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) | |
| 3 | 2 | notbid 318 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓)) |
| 4 | 1, 3 | bitrid 283 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon3bbid 2962 necon2abid 2967 prneimg2 4819 prnesn 4824 foconst 6787 fndmdif 7014 suppsnop 8157 om00el 8540 oeoa 8561 cardsdom2 9941 mulne0b 11819 crne0 12179 expneg 14034 hashsdom 14346 prprrab 14438 gcdn0gt0 16488 cncongr2 16638 pltval3 18298 mulgnegnn 19016 domnmuln0 20618 drngmulne0 20671 lvecvsn0 21019 mvrf1 21895 connsub 23308 pthaus 23525 xkohaus 23540 bndth 24857 lebnumlem1 24860 dvcobr 25849 dvcobrOLD 25850 dvcnvlem 25880 mdegle0 25982 coemulhi 26159 vieta1lem1 26218 vieta1lem2 26219 aalioulem2 26241 cosne0 26438 atandm3 26788 wilthlem2 26979 issqf 27046 mumullem2 27090 dchrptlem3 27177 lgseisenlem3 27288 mulsne0bd 28089 brbtwn2 28832 colinearalg 28837 vdn0conngrumgrv2 30125 vdgn1frgrv2 30225 nmlno0lem 30722 nmlnop0iALT 31924 atcvat2i 32316 elq2 32736 divnumden2 32740 domnmuln0rd 33225 lindssn 33349 mxidlirredi 33442 mxidlirred 33443 fedgmullem2 33626 minplyirred 33701 cos9thpiminplylem3 33774 bnj1542 34847 bnj1253 35007 ptrecube 37614 poimirlem13 37627 ecinn0 38335 llnexchb2 39863 cdlemb3 40600 aks6d1c2p2 42107 aks6d1c6lem3 42160 fsuppind 42578 rencldnfilem 42808 qirropth 42896 binomcxplemfrat 44340 binomcxplemradcnv 44341 mod2addne 47365 odz2prm2pw 47564 |
| Copyright terms: Public domain | W3C validator |