| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3abid | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 21-Mar-2007.) |
| Ref | Expression |
|---|---|
| necon3abid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| necon3abid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2941 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3abid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) | |
| 3 | 2 | notbid 318 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓)) |
| 4 | 1, 3 | bitrid 283 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2941 |
| This theorem is referenced by: necon3bbid 2978 necon2abid 2983 prneimg2 4855 prnesn 4860 foconst 6835 fndmdif 7062 suppsnop 8203 om00el 8614 oeoa 8635 cardsdom2 10028 mulne0b 11904 crne0 12259 expneg 14110 hashsdom 14420 prprrab 14512 gcdn0gt0 16555 cncongr2 16705 pltval3 18384 mulgnegnn 19102 domnmuln0 20709 drngmulne0 20762 lvecvsn0 21111 mvrf1 22006 connsub 23429 pthaus 23646 xkohaus 23661 bndth 24990 lebnumlem1 24993 dvcobr 25983 dvcobrOLD 25984 dvcnvlem 26014 mdegle0 26116 coemulhi 26293 vieta1lem1 26352 vieta1lem2 26353 aalioulem2 26375 cosne0 26571 atandm3 26921 wilthlem2 27112 issqf 27179 mumullem2 27223 dchrptlem3 27310 lgseisenlem3 27421 mulsne0bd 28212 brbtwn2 28920 colinearalg 28925 vdn0conngrumgrv2 30215 vdgn1frgrv2 30315 nmlno0lem 30812 nmlnop0iALT 32014 atcvat2i 32406 divnumden2 32817 domnmuln0rd 33278 lindssn 33406 mxidlirredi 33499 mxidlirred 33500 fedgmullem2 33681 minplyirred 33754 bnj1542 34871 bnj1253 35031 ptrecube 37627 poimirlem13 37640 ecinn0 38354 llnexchb2 39871 cdlemb3 40608 aks6d1c2p2 42120 aks6d1c6lem3 42173 fsuppind 42600 rencldnfilem 42831 qirropth 42919 binomcxplemfrat 44370 binomcxplemradcnv 44371 odz2prm2pw 47550 |
| Copyright terms: Public domain | W3C validator |