![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3abid | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 21-Mar-2007.) |
Ref | Expression |
---|---|
necon3abid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
Ref | Expression |
---|---|
necon3abid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2939 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon3abid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) | |
3 | 2 | notbid 318 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓)) |
4 | 1, 3 | bitrid 283 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2939 |
This theorem is referenced by: necon3bbid 2976 necon2abid 2981 prneimg2 4860 prnesn 4865 foconst 6836 fndmdif 7062 suppsnop 8202 om00el 8613 oeoa 8634 cardsdom2 10026 mulne0b 11902 crne0 12257 expneg 14107 hashsdom 14417 prprrab 14509 gcdn0gt0 16552 cncongr2 16702 pltval3 18397 mulgnegnn 19115 domnmuln0 20726 drngmulne0 20779 lvecvsn0 21129 mvrf1 22024 connsub 23445 pthaus 23662 xkohaus 23677 bndth 25004 lebnumlem1 25007 dvcobr 25998 dvcobrOLD 25999 dvcnvlem 26029 mdegle0 26131 coemulhi 26308 vieta1lem1 26367 vieta1lem2 26368 aalioulem2 26390 cosne0 26586 atandm3 26936 wilthlem2 27127 issqf 27194 mumullem2 27238 dchrptlem3 27325 lgseisenlem3 27436 mulsne0bd 28227 brbtwn2 28935 colinearalg 28940 vdn0conngrumgrv2 30225 vdgn1frgrv2 30325 nmlno0lem 30822 nmlnop0iALT 32024 atcvat2i 32416 divnumden2 32822 domnmuln0rd 33261 lindssn 33386 mxidlirredi 33479 mxidlirred 33480 fedgmullem2 33658 minplyirred 33719 bnj1542 34850 bnj1253 35010 ptrecube 37607 poimirlem13 37620 ecinn0 38335 llnexchb2 39852 cdlemb3 40589 aks6d1c2p2 42101 aks6d1c6lem3 42154 fsuppind 42577 rencldnfilem 42808 qirropth 42896 binomcxplemfrat 44347 binomcxplemradcnv 44348 odz2prm2pw 47488 |
Copyright terms: Public domain | W3C validator |