| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3abid | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 21-Mar-2007.) |
| Ref | Expression |
|---|---|
| necon3abid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| necon3abid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2927 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3abid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) | |
| 3 | 2 | notbid 318 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓)) |
| 4 | 1, 3 | bitrid 283 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: necon3bbid 2963 necon2abid 2968 prneimg2 4822 prnesn 4827 foconst 6790 fndmdif 7017 suppsnop 8160 om00el 8543 oeoa 8564 cardsdom2 9948 mulne0b 11826 crne0 12186 expneg 14041 hashsdom 14353 prprrab 14445 gcdn0gt0 16495 cncongr2 16645 pltval3 18305 mulgnegnn 19023 domnmuln0 20625 drngmulne0 20678 lvecvsn0 21026 mvrf1 21902 connsub 23315 pthaus 23532 xkohaus 23547 bndth 24864 lebnumlem1 24867 dvcobr 25856 dvcobrOLD 25857 dvcnvlem 25887 mdegle0 25989 coemulhi 26166 vieta1lem1 26225 vieta1lem2 26226 aalioulem2 26248 cosne0 26445 atandm3 26795 wilthlem2 26986 issqf 27053 mumullem2 27097 dchrptlem3 27184 lgseisenlem3 27295 mulsne0bd 28096 brbtwn2 28839 colinearalg 28844 vdn0conngrumgrv2 30132 vdgn1frgrv2 30232 nmlno0lem 30729 nmlnop0iALT 31931 atcvat2i 32323 elq2 32743 divnumden2 32747 domnmuln0rd 33232 lindssn 33356 mxidlirredi 33449 mxidlirred 33450 fedgmullem2 33633 minplyirred 33708 cos9thpiminplylem3 33781 bnj1542 34854 bnj1253 35014 ptrecube 37621 poimirlem13 37634 ecinn0 38342 llnexchb2 39870 cdlemb3 40607 aks6d1c2p2 42114 aks6d1c6lem3 42167 fsuppind 42585 rencldnfilem 42815 qirropth 42903 binomcxplemfrat 44347 binomcxplemradcnv 44348 mod2addne 47369 odz2prm2pw 47568 |
| Copyright terms: Public domain | W3C validator |