Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3abid | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 21-Mar-2007.) |
Ref | Expression |
---|---|
necon3abid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
Ref | Expression |
---|---|
necon3abid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2952 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon3abid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) | |
3 | 2 | notbid 321 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓)) |
4 | 1, 3 | syl5bb 286 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 = wceq 1538 ≠ wne 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-ne 2952 |
This theorem is referenced by: necon3bbid 2988 necon2abid 2993 prnesn 4747 foconst 6589 fndmdif 6803 suppsnop 7852 om00el 8212 oeoa 8233 cardsdom2 9450 mulne0b 11319 crne0 11667 expneg 13487 hashsdom 13792 prprrab 13883 gcdn0gt0 15917 cncongr2 16064 pltval3 17643 mulgnegnn 18305 drngmulne0 19592 lvecvsn0 19949 domnmuln0 20139 mvrf1 20753 connsub 22121 pthaus 22338 xkohaus 22353 bndth 23659 lebnumlem1 23662 dvcobr 24645 dvcnvlem 24675 mdegle0 24777 coemulhi 24950 vieta1lem1 25005 vieta1lem2 25006 aalioulem2 25028 cosne0 25220 atandm3 25563 wilthlem2 25753 issqf 25820 mumullem2 25864 dchrptlem3 25949 lgseisenlem3 26060 brbtwn2 26798 colinearalg 26803 vdn0conngrumgrv2 28080 vdgn1frgrv2 28180 nmlno0lem 28675 nmlnop0iALT 29877 atcvat2i 30269 divnumden2 30656 lindssn 31094 fedgmullem2 31232 bnj1542 32357 bnj1253 32517 ptrecube 35337 poimirlem13 35350 ecinn0 36047 llnexchb2 37445 cdlemb3 38182 fsuppind 39784 rencldnfilem 40134 qirropth 40222 binomcxplemfrat 41428 binomcxplemradcnv 41429 odz2prm2pw 44448 |
Copyright terms: Public domain | W3C validator |