![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3abid | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 21-Mar-2007.) |
Ref | Expression |
---|---|
necon3abid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
Ref | Expression |
---|---|
necon3abid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2947 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon3abid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) | |
3 | 2 | notbid 318 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓)) |
4 | 1, 3 | bitrid 283 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: necon3bbid 2984 necon2abid 2989 prnesn 4884 foconst 6849 fndmdif 7075 suppsnop 8219 om00el 8632 oeoa 8653 cardsdom2 10057 mulne0b 11931 crne0 12286 expneg 14120 hashsdom 14430 prprrab 14522 gcdn0gt0 16564 cncongr2 16715 pltval3 18409 mulgnegnn 19124 domnmuln0 20731 drngmulne0 20784 lvecvsn0 21134 mvrf1 22029 connsub 23450 pthaus 23667 xkohaus 23682 bndth 25009 lebnumlem1 25012 dvcobr 26003 dvcobrOLD 26004 dvcnvlem 26034 mdegle0 26136 coemulhi 26313 vieta1lem1 26370 vieta1lem2 26371 aalioulem2 26393 cosne0 26589 atandm3 26939 wilthlem2 27130 issqf 27197 mumullem2 27241 dchrptlem3 27328 lgseisenlem3 27439 mulsne0bd 28230 brbtwn2 28938 colinearalg 28943 vdn0conngrumgrv2 30228 vdgn1frgrv2 30328 nmlno0lem 30825 nmlnop0iALT 32027 atcvat2i 32419 divnumden2 32819 domnmuln0rd 33246 lindssn 33371 mxidlirredi 33464 mxidlirred 33465 fedgmullem2 33643 minplyirred 33704 bnj1542 34833 bnj1253 34993 ptrecube 37580 poimirlem13 37593 ecinn0 38309 llnexchb2 39826 cdlemb3 40563 aks6d1c2p2 42076 aks6d1c6lem3 42129 fsuppind 42545 rencldnfilem 42776 qirropth 42864 binomcxplemfrat 44320 binomcxplemradcnv 44321 odz2prm2pw 47437 |
Copyright terms: Public domain | W3C validator |