Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3abid | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 21-Mar-2007.) |
Ref | Expression |
---|---|
necon3abid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
Ref | Expression |
---|---|
necon3abid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2944 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon3abid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) | |
3 | 2 | notbid 318 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓)) |
4 | 1, 3 | bitrid 282 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2944 |
This theorem is referenced by: necon3bbid 2981 necon2abid 2986 prnesn 4790 foconst 6703 fndmdif 6919 suppsnop 7994 om00el 8407 oeoa 8428 cardsdom2 9746 mulne0b 11616 crne0 11966 expneg 13790 hashsdom 14096 prprrab 14187 gcdn0gt0 16225 cncongr2 16373 pltval3 18057 mulgnegnn 18714 drngmulne0 20013 lvecvsn0 20371 domnmuln0 20569 mvrf1 21194 connsub 22572 pthaus 22789 xkohaus 22804 bndth 24121 lebnumlem1 24124 dvcobr 25110 dvcnvlem 25140 mdegle0 25242 coemulhi 25415 vieta1lem1 25470 vieta1lem2 25471 aalioulem2 25493 cosne0 25685 atandm3 26028 wilthlem2 26218 issqf 26285 mumullem2 26329 dchrptlem3 26414 lgseisenlem3 26525 brbtwn2 27273 colinearalg 27278 vdn0conngrumgrv2 28560 vdgn1frgrv2 28660 nmlno0lem 29155 nmlnop0iALT 30357 atcvat2i 30749 divnumden2 31132 lindssn 31573 fedgmullem2 31711 bnj1542 32837 bnj1253 32997 ptrecube 35777 poimirlem13 35790 ecinn0 36485 llnexchb2 37883 cdlemb3 38620 fsuppind 40279 rencldnfilem 40642 qirropth 40730 binomcxplemfrat 41969 binomcxplemradcnv 41970 odz2prm2pw 45015 |
Copyright terms: Public domain | W3C validator |