![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3abid | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 21-Mar-2007.) |
Ref | Expression |
---|---|
necon3abid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
Ref | Expression |
---|---|
necon3abid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2933 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon3abid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) | |
3 | 2 | notbid 318 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓)) |
4 | 1, 3 | bitrid 283 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1533 ≠ wne 2932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2933 |
This theorem is referenced by: necon3bbid 2970 necon2abid 2975 prnesn 4853 foconst 6811 fndmdif 7034 suppsnop 8158 om00el 8572 oeoa 8593 cardsdom2 9980 mulne0b 11853 crne0 12203 expneg 14033 hashsdom 14339 prprrab 14432 gcdn0gt0 16458 cncongr2 16604 pltval3 18296 mulgnegnn 19003 drngmulne0 20609 lvecvsn0 20952 domnmuln0 21200 mvrf1 21857 connsub 23249 pthaus 23466 xkohaus 23481 bndth 24808 lebnumlem1 24811 dvcobr 25801 dvcobrOLD 25802 dvcnvlem 25832 mdegle0 25937 coemulhi 26110 vieta1lem1 26166 vieta1lem2 26167 aalioulem2 26189 cosne0 26382 atandm3 26729 wilthlem2 26920 issqf 26987 mumullem2 27031 dchrptlem3 27118 lgseisenlem3 27229 mulsne0bd 28005 brbtwn2 28635 colinearalg 28640 vdn0conngrumgrv2 29921 vdgn1frgrv2 30021 nmlno0lem 30518 nmlnop0iALT 31720 atcvat2i 32112 divnumden2 32494 lindssn 32966 mxidlirredi 33059 mxidlirred 33060 fedgmullem2 33197 minplyirred 33253 bnj1542 34359 bnj1253 34519 ptrecube 36982 poimirlem13 36995 ecinn0 37716 llnexchb2 39234 cdlemb3 39971 aks6d1c2p2 41454 fsuppind 41655 rencldnfilem 42072 qirropth 42160 binomcxplemfrat 43624 binomcxplemradcnv 43625 odz2prm2pw 46741 |
Copyright terms: Public domain | W3C validator |