| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3abid | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 21-Mar-2007.) |
| Ref | Expression |
|---|---|
| necon3abid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| necon3abid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2934 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3abid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) | |
| 3 | 2 | notbid 318 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓)) |
| 4 | 1, 3 | bitrid 283 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2934 |
| This theorem is referenced by: necon3bbid 2970 necon2abid 2975 prneimg2 4836 prnesn 4841 foconst 6810 fndmdif 7037 suppsnop 8182 om00el 8593 oeoa 8614 cardsdom2 10007 mulne0b 11883 crne0 12238 expneg 14092 hashsdom 14404 prprrab 14496 gcdn0gt0 16542 cncongr2 16692 pltval3 18354 mulgnegnn 19072 domnmuln0 20674 drngmulne0 20727 lvecvsn0 21075 mvrf1 21951 connsub 23364 pthaus 23581 xkohaus 23596 bndth 24913 lebnumlem1 24916 dvcobr 25906 dvcobrOLD 25907 dvcnvlem 25937 mdegle0 26039 coemulhi 26216 vieta1lem1 26275 vieta1lem2 26276 aalioulem2 26298 cosne0 26495 atandm3 26845 wilthlem2 27036 issqf 27103 mumullem2 27147 dchrptlem3 27234 lgseisenlem3 27345 mulsne0bd 28146 brbtwn2 28889 colinearalg 28894 vdn0conngrumgrv2 30182 vdgn1frgrv2 30282 nmlno0lem 30779 nmlnop0iALT 31981 atcvat2i 32373 elq2 32795 divnumden2 32799 domnmuln0rd 33274 lindssn 33398 mxidlirredi 33491 mxidlirred 33492 fedgmullem2 33675 minplyirred 33750 cos9thpiminplylem3 33823 bnj1542 34893 bnj1253 35053 ptrecube 37649 poimirlem13 37662 ecinn0 38376 llnexchb2 39893 cdlemb3 40630 aks6d1c2p2 42137 aks6d1c6lem3 42190 fsuppind 42580 rencldnfilem 42810 qirropth 42898 binomcxplemfrat 44342 binomcxplemradcnv 44343 odz2prm2pw 47544 |
| Copyright terms: Public domain | W3C validator |