| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3abid | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 21-Mar-2007.) |
| Ref | Expression |
|---|---|
| necon3abid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| necon3abid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2929 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3abid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) | |
| 3 | 2 | notbid 318 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓)) |
| 4 | 1, 3 | bitrid 283 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: necon3bbid 2965 necon2abid 2970 prneimg2 4807 prnesn 4812 foconst 6750 fndmdif 6975 suppsnop 8108 om00el 8491 oeoa 8512 cardsdom2 9878 mulne0b 11755 crne0 12115 expneg 13973 hashsdom 14285 prprrab 14377 gcdn0gt0 16426 cncongr2 16576 pltval3 18240 mulgnegnn 18994 domnmuln0 20622 drngmulne0 20675 lvecvsn0 21044 mvrf1 21921 connsub 23334 pthaus 23551 xkohaus 23566 bndth 24882 lebnumlem1 24885 dvcobr 25874 dvcobrOLD 25875 dvcnvlem 25905 mdegle0 26007 coemulhi 26184 vieta1lem1 26243 vieta1lem2 26244 aalioulem2 26266 cosne0 26463 atandm3 26813 wilthlem2 27004 issqf 27071 mumullem2 27115 dchrptlem3 27202 lgseisenlem3 27313 mulsne0bd 28123 brbtwn2 28881 colinearalg 28886 vdn0conngrumgrv2 30171 vdgn1frgrv2 30271 nmlno0lem 30768 nmlnop0iALT 31970 atcvat2i 32362 elq2 32789 divnumden2 32793 domnmuln0rd 33236 lindssn 33338 mxidlirredi 33431 mxidlirred 33432 fedgmullem2 33638 minplyirred 33719 cos9thpiminplylem3 33792 bnj1542 34864 bnj1253 35024 ptrecube 37659 poimirlem13 37672 ecinn0 38380 llnexchb2 39907 cdlemb3 40644 aks6d1c2p2 42151 aks6d1c6lem3 42204 fsuppind 42622 rencldnfilem 42852 qirropth 42940 binomcxplemfrat 44383 binomcxplemradcnv 44384 mod2addne 47394 odz2prm2pw 47593 |
| Copyright terms: Public domain | W3C validator |