| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3abid | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 21-Mar-2007.) |
| Ref | Expression |
|---|---|
| necon3abid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| necon3abid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2930 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3abid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) | |
| 3 | 2 | notbid 318 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓)) |
| 4 | 1, 3 | bitrid 283 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2930 |
| This theorem is referenced by: necon3bbid 2966 necon2abid 2971 prneimg2 4806 prnesn 4811 foconst 6755 fndmdif 6981 suppsnop 8114 om00el 8497 oeoa 8518 cardsdom2 9888 mulne0b 11765 crne0 12125 expneg 13978 hashsdom 14290 prprrab 14382 gcdn0gt0 16431 cncongr2 16581 pltval3 18245 mulgnegnn 18999 domnmuln0 20626 drngmulne0 20679 lvecvsn0 21048 mvrf1 21924 connsub 23337 pthaus 23554 xkohaus 23569 bndth 24885 lebnumlem1 24888 dvcobr 25877 dvcobrOLD 25878 dvcnvlem 25908 mdegle0 26010 coemulhi 26187 vieta1lem1 26246 vieta1lem2 26247 aalioulem2 26269 cosne0 26466 atandm3 26816 wilthlem2 27007 issqf 27074 mumullem2 27118 dchrptlem3 27205 lgseisenlem3 27316 mulsne0bd 28126 brbtwn2 28885 colinearalg 28890 vdn0conngrumgrv2 30178 vdgn1frgrv2 30278 nmlno0lem 30775 nmlnop0iALT 31977 atcvat2i 32369 elq2 32799 divnumden2 32803 domnmuln0rd 33248 lindssn 33350 mxidlirredi 33443 mxidlirred 33444 fedgmullem2 33664 minplyirred 33745 cos9thpiminplylem3 33818 bnj1542 34890 bnj1253 35050 ptrecube 37681 poimirlem13 37694 ecinn0 38406 llnexchb2 39989 cdlemb3 40726 aks6d1c2p2 42233 aks6d1c6lem3 42286 fsuppind 42709 rencldnfilem 42938 qirropth 43026 binomcxplemfrat 44469 binomcxplemradcnv 44470 mod2addne 47489 odz2prm2pw 47688 |
| Copyright terms: Public domain | W3C validator |