| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3abid | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 21-Mar-2007.) |
| Ref | Expression |
|---|---|
| necon3abid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| necon3abid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3abid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) | |
| 3 | 2 | notbid 318 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓)) |
| 4 | 1, 3 | bitrid 283 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon3bbid 2962 necon2abid 2967 prneimg2 4809 prnesn 4814 foconst 6755 fndmdif 6980 suppsnop 8118 om00el 8501 oeoa 8522 cardsdom2 9903 mulne0b 11779 crne0 12139 expneg 13994 hashsdom 14306 prprrab 14398 gcdn0gt0 16447 cncongr2 16597 pltval3 18261 mulgnegnn 18981 domnmuln0 20612 drngmulne0 20665 lvecvsn0 21034 mvrf1 21911 connsub 23324 pthaus 23541 xkohaus 23556 bndth 24873 lebnumlem1 24876 dvcobr 25865 dvcobrOLD 25866 dvcnvlem 25896 mdegle0 25998 coemulhi 26175 vieta1lem1 26234 vieta1lem2 26235 aalioulem2 26257 cosne0 26454 atandm3 26804 wilthlem2 26995 issqf 27062 mumullem2 27106 dchrptlem3 27193 lgseisenlem3 27304 mulsne0bd 28112 brbtwn2 28868 colinearalg 28873 vdn0conngrumgrv2 30158 vdgn1frgrv2 30258 nmlno0lem 30755 nmlnop0iALT 31957 atcvat2i 32349 elq2 32769 divnumden2 32773 domnmuln0rd 33224 lindssn 33325 mxidlirredi 33418 mxidlirred 33419 fedgmullem2 33602 minplyirred 33677 cos9thpiminplylem3 33750 bnj1542 34823 bnj1253 34983 ptrecube 37599 poimirlem13 37612 ecinn0 38320 llnexchb2 39848 cdlemb3 40585 aks6d1c2p2 42092 aks6d1c6lem3 42145 fsuppind 42563 rencldnfilem 42793 qirropth 42881 binomcxplemfrat 44324 binomcxplemradcnv 44325 mod2addne 47349 odz2prm2pw 47548 |
| Copyright terms: Public domain | W3C validator |