![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3abid | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 21-Mar-2007.) |
Ref | Expression |
---|---|
necon3abid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
Ref | Expression |
---|---|
necon3abid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2970 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon3abid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) | |
3 | 2 | notbid 310 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓)) |
4 | 1, 3 | syl5bb 275 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 = wceq 1653 ≠ wne 2969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-ne 2970 |
This theorem is referenced by: necon3bbid 3006 necon2abid 3011 prnesn 4577 foconst 6342 fndmdif 6545 suppsnop 7544 om00el 7894 oeoa 7915 cardsdom2 9098 mulne0b 10958 crne0 11303 expneg 13118 hashsdom 13416 prprrab 13500 gcdn0gt0 15571 cncongr2 15713 pltval3 17279 mulgnegnn 17864 drngmulne0 19084 lvecvsn0 19427 domnmuln0 19618 mvrf1 19745 connsub 21550 pthaus 21767 xkohaus 21782 bndth 23082 lebnumlem1 23085 dvcobr 24047 dvcnvlem 24077 mdegle0 24175 coemulhi 24348 vieta1lem1 24403 vieta1lem2 24404 aalioulem2 24426 cosne0 24615 atandm3 24954 wilthlem2 25144 issqf 25211 mumullem2 25255 dchrptlem3 25340 lgseisenlem3 25451 brbtwn2 26134 colinearalg 26139 vdn0conngrumgrv2 27532 vdgn1frgrv2 27637 nmlno0lem 28165 nmlnop0iALT 29371 atcvat2i 29763 divnumden2 30074 bnj1542 31436 bnj1253 31594 ptrecube 33890 poimirlem13 33903 ecinn0 34604 llnexchb2 35882 cdlemb3 36619 rencldnfilem 38158 qirropth 38246 binomcxplemfrat 39320 binomcxplemradcnv 39321 odz2prm2pw 42245 |
Copyright terms: Public domain | W3C validator |