| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3abid | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 21-Mar-2007.) |
| Ref | Expression |
|---|---|
| necon3abid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| necon3abid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2932 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon3abid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) | |
| 3 | 2 | notbid 318 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓)) |
| 4 | 1, 3 | bitrid 283 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1539 ≠ wne 2931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2932 |
| This theorem is referenced by: necon3bbid 2968 necon2abid 2973 prneimg2 4835 prnesn 4840 foconst 6815 fndmdif 7042 suppsnop 8185 om00el 8596 oeoa 8617 cardsdom2 10010 mulne0b 11886 crne0 12241 expneg 14092 hashsdom 14402 prprrab 14494 gcdn0gt0 16537 cncongr2 16687 pltval3 18353 mulgnegnn 19071 domnmuln0 20677 drngmulne0 20730 lvecvsn0 21079 mvrf1 21960 connsub 23375 pthaus 23592 xkohaus 23607 bndth 24926 lebnumlem1 24929 dvcobr 25919 dvcobrOLD 25920 dvcnvlem 25950 mdegle0 26052 coemulhi 26229 vieta1lem1 26288 vieta1lem2 26289 aalioulem2 26311 cosne0 26507 atandm3 26857 wilthlem2 27048 issqf 27115 mumullem2 27159 dchrptlem3 27246 lgseisenlem3 27357 mulsne0bd 28148 brbtwn2 28850 colinearalg 28855 vdn0conngrumgrv2 30143 vdgn1frgrv2 30243 nmlno0lem 30740 nmlnop0iALT 31942 atcvat2i 32334 divnumden2 32757 domnmuln0rd 33217 lindssn 33341 mxidlirredi 33434 mxidlirred 33435 fedgmullem2 33616 minplyirred 33691 bnj1542 34830 bnj1253 34990 ptrecube 37586 poimirlem13 37599 ecinn0 38313 llnexchb2 39830 cdlemb3 40567 aks6d1c2p2 42079 aks6d1c6lem3 42132 fsuppind 42563 rencldnfilem 42794 qirropth 42882 binomcxplemfrat 44327 binomcxplemradcnv 44328 odz2prm2pw 47508 |
| Copyright terms: Public domain | W3C validator |