Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3abid | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 21-Mar-2007.) |
Ref | Expression |
---|---|
necon3abid.1 | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
Ref | Expression |
---|---|
necon3abid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2943 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon3abid.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) | |
3 | 2 | notbid 317 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓)) |
4 | 1, 3 | syl5bb 282 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: necon3bbid 2980 necon2abid 2985 prnesn 4787 foconst 6687 fndmdif 6901 suppsnop 7965 om00el 8369 oeoa 8390 cardsdom2 9677 mulne0b 11546 crne0 11896 expneg 13718 hashsdom 14024 prprrab 14115 gcdn0gt0 16153 cncongr2 16301 pltval3 17972 mulgnegnn 18629 drngmulne0 19928 lvecvsn0 20286 domnmuln0 20482 mvrf1 21104 connsub 22480 pthaus 22697 xkohaus 22712 bndth 24027 lebnumlem1 24030 dvcobr 25015 dvcnvlem 25045 mdegle0 25147 coemulhi 25320 vieta1lem1 25375 vieta1lem2 25376 aalioulem2 25398 cosne0 25590 atandm3 25933 wilthlem2 26123 issqf 26190 mumullem2 26234 dchrptlem3 26319 lgseisenlem3 26430 brbtwn2 27176 colinearalg 27181 vdn0conngrumgrv2 28461 vdgn1frgrv2 28561 nmlno0lem 29056 nmlnop0iALT 30258 atcvat2i 30650 divnumden2 31034 lindssn 31475 fedgmullem2 31613 bnj1542 32737 bnj1253 32897 ptrecube 35704 poimirlem13 35717 ecinn0 36412 llnexchb2 37810 cdlemb3 38547 fsuppind 40202 rencldnfilem 40558 qirropth 40646 binomcxplemfrat 41858 binomcxplemradcnv 41859 odz2prm2pw 44903 |
Copyright terms: Public domain | W3C validator |