![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snnen2o | Structured version Visualization version GIF version |
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.) Avoid ax-pow 5363, ax-un 7728. (Revised by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
snnen2o | ⊢ ¬ {𝐴} ≈ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 8477 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
2 | 0ex 5307 | . . . . . . . . 9 ⊢ ∅ ∈ V | |
3 | 1oex 8479 | . . . . . . . . 9 ⊢ 1o ∈ V | |
4 | 1n0 8491 | . . . . . . . . . 10 ⊢ 1o ≠ ∅ | |
5 | 4 | necomi 2994 | . . . . . . . . 9 ⊢ ∅ ≠ 1o |
6 | prnesn 4860 | . . . . . . . . 9 ⊢ ((∅ ∈ V ∧ 1o ∈ V ∧ ∅ ≠ 1o) → {∅, 1o} ≠ {𝑥}) | |
7 | 2, 3, 5, 6 | mp3an 1460 | . . . . . . . 8 ⊢ {∅, 1o} ≠ {𝑥} |
8 | 1, 7 | eqnetri 3010 | . . . . . . 7 ⊢ 2o ≠ {𝑥} |
9 | 8 | neii 2941 | . . . . . 6 ⊢ ¬ 2o = {𝑥} |
10 | 9 | nex 1801 | . . . . 5 ⊢ ¬ ∃𝑥2o = {𝑥} |
11 | 2on0 8485 | . . . . . 6 ⊢ 2o ≠ ∅ | |
12 | f1cdmsn 7283 | . . . . . 6 ⊢ ((◡𝑓:2o–1-1→{𝐴} ∧ 2o ≠ ∅) → ∃𝑥2o = {𝑥}) | |
13 | 11, 12 | mpan2 688 | . . . . 5 ⊢ (◡𝑓:2o–1-1→{𝐴} → ∃𝑥2o = {𝑥}) |
14 | 10, 13 | mto 196 | . . . 4 ⊢ ¬ ◡𝑓:2o–1-1→{𝐴} |
15 | f1ocnv 6845 | . . . . 5 ⊢ (𝑓:{𝐴}–1-1-onto→2o → ◡𝑓:2o–1-1-onto→{𝐴}) | |
16 | f1of1 6832 | . . . . 5 ⊢ (◡𝑓:2o–1-1-onto→{𝐴} → ◡𝑓:2o–1-1→{𝐴}) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝑓:{𝐴}–1-1-onto→2o → ◡𝑓:2o–1-1→{𝐴}) |
18 | 14, 17 | mto 196 | . . 3 ⊢ ¬ 𝑓:{𝐴}–1-1-onto→2o |
19 | 18 | nex 1801 | . 2 ⊢ ¬ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o |
20 | snex 5431 | . . 3 ⊢ {𝐴} ∈ V | |
21 | 2oex 8480 | . . 3 ⊢ 2o ∈ V | |
22 | breng 8951 | . . 3 ⊢ (({𝐴} ∈ V ∧ 2o ∈ V) → ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o)) | |
23 | 20, 21, 22 | mp2an 689 | . 2 ⊢ ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o) |
24 | 19, 23 | mtbir 323 | 1 ⊢ ¬ {𝐴} ≈ 2o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ≠ wne 2939 Vcvv 3473 ∅c0 4322 {csn 4628 {cpr 4630 class class class wbr 5148 ◡ccnv 5675 –1-1→wf1 6540 –1-1-onto→wf1o 6542 1oc1o 8462 2oc2o 8463 ≈ cen 8939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-1o 8469 df-2o 8470 df-en 8943 |
This theorem is referenced by: 1sdom2 9243 1sdom2dom 9250 pr2ne 10002 pmtrsn 19429 trivnsimpgd 20009 |
Copyright terms: Public domain | W3C validator |