MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snnen2o Structured version   Visualization version   GIF version

Theorem snnen2o 8903
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.)
Assertion
Ref Expression
snnen2o ¬ {𝐴} ≈ 2o

Proof of Theorem snnen2o
StepHypRef Expression
1 1onn 8432 . . . 4 1o ∈ ω
2 php5 8901 . . . 4 (1o ∈ ω → ¬ 1o ≈ suc 1o)
31, 2ax-mp 5 . . 3 ¬ 1o ≈ suc 1o
4 ensn1g 8763 . . 3 (𝐴 ∈ V → {𝐴} ≈ 1o)
5 df-2o 8268 . . . . . 6 2o = suc 1o
65eqcomi 2747 . . . . 5 suc 1o = 2o
76breq2i 5078 . . . 4 (1o ≈ suc 1o ↔ 1o ≈ 2o)
8 ensymb 8743 . . . . . 6 ({𝐴} ≈ 1o ↔ 1o ≈ {𝐴})
9 entr 8747 . . . . . . 7 ((1o ≈ {𝐴} ∧ {𝐴} ≈ 2o) → 1o ≈ 2o)
109ex 412 . . . . . 6 (1o ≈ {𝐴} → ({𝐴} ≈ 2o → 1o ≈ 2o))
118, 10sylbi 216 . . . . 5 ({𝐴} ≈ 1o → ({𝐴} ≈ 2o → 1o ≈ 2o))
1211con3rr3 155 . . . 4 (¬ 1o ≈ 2o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o))
137, 12sylnbi 329 . . 3 (¬ 1o ≈ suc 1o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o))
143, 4, 13mpsyl 68 . 2 (𝐴 ∈ V → ¬ {𝐴} ≈ 2o)
15 2on0 8276 . . . 4 2o ≠ ∅
16 ensymb 8743 . . . . 5 (∅ ≈ 2o ↔ 2o ≈ ∅)
17 en0 8758 . . . . 5 (2o ≈ ∅ ↔ 2o = ∅)
1816, 17bitri 274 . . . 4 (∅ ≈ 2o ↔ 2o = ∅)
1915, 18nemtbir 3039 . . 3 ¬ ∅ ≈ 2o
20 snprc 4650 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
2120biimpi 215 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
2221breq1d 5080 . . 3 𝐴 ∈ V → ({𝐴} ≈ 2o ↔ ∅ ≈ 2o))
2319, 22mtbiri 326 . 2 𝐴 ∈ V → ¬ {𝐴} ≈ 2o)
2414, 23pm2.61i 182 1 ¬ {𝐴} ≈ 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  {csn 4558   class class class wbr 5070  suc csuc 6253  ωcom 7687  1oc1o 8260  2oc2o 8261  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694
This theorem is referenced by:  pmtrsn  19042  trivnsimpgd  19615
  Copyright terms: Public domain W3C validator