MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snnen2o Structured version   Visualization version   GIF version

Theorem snnen2o 9129
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.) Avoid ax-pow 5301, ax-un 7668. (Revised by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
snnen2o ¬ {𝐴} ≈ 2o

Proof of Theorem snnen2o
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df2o3 8393 . . . . . . . 8 2o = {∅, 1o}
2 0ex 5243 . . . . . . . . 9 ∅ ∈ V
3 1oex 8395 . . . . . . . . 9 1o ∈ V
4 1n0 8403 . . . . . . . . . 10 1o ≠ ∅
54necomi 2982 . . . . . . . . 9 ∅ ≠ 1o
6 prnesn 4809 . . . . . . . . 9 ((∅ ∈ V ∧ 1o ∈ V ∧ ∅ ≠ 1o) → {∅, 1o} ≠ {𝑥})
72, 3, 5, 6mp3an 1463 . . . . . . . 8 {∅, 1o} ≠ {𝑥}
81, 7eqnetri 2998 . . . . . . 7 2o ≠ {𝑥}
98neii 2930 . . . . . 6 ¬ 2o = {𝑥}
109nex 1801 . . . . 5 ¬ ∃𝑥2o = {𝑥}
11 2on0 8399 . . . . . 6 2o ≠ ∅
12 f1cdmsn 7216 . . . . . 6 ((𝑓:2o1-1→{𝐴} ∧ 2o ≠ ∅) → ∃𝑥2o = {𝑥})
1311, 12mpan2 691 . . . . 5 (𝑓:2o1-1→{𝐴} → ∃𝑥2o = {𝑥})
1410, 13mto 197 . . . 4 ¬ 𝑓:2o1-1→{𝐴}
15 f1ocnv 6775 . . . . 5 (𝑓:{𝐴}–1-1-onto→2o𝑓:2o1-1-onto→{𝐴})
16 f1of1 6762 . . . . 5 (𝑓:2o1-1-onto→{𝐴} → 𝑓:2o1-1→{𝐴})
1715, 16syl 17 . . . 4 (𝑓:{𝐴}–1-1-onto→2o𝑓:2o1-1→{𝐴})
1814, 17mto 197 . . 3 ¬ 𝑓:{𝐴}–1-1-onto→2o
1918nex 1801 . 2 ¬ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o
20 snex 5372 . . 3 {𝐴} ∈ V
21 2oex 8396 . . 3 2o ∈ V
22 breng 8878 . . 3 (({𝐴} ∈ V ∧ 2o ∈ V) → ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o))
2320, 21, 22mp2an 692 . 2 ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o)
2419, 23mtbir 323 1 ¬ {𝐴} ≈ 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wex 1780  wcel 2111  wne 2928  Vcvv 3436  c0 4280  {csn 4573  {cpr 4575   class class class wbr 5089  ccnv 5613  1-1wf1 6478  1-1-ontowf1o 6480  1oc1o 8378  2oc2o 8379  cen 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-1o 8385  df-2o 8386  df-en 8870
This theorem is referenced by:  1sdom2  9132  1sdom2dom  9138  pr2ne  9896  pmtrsn  19431  trivnsimpgd  20011
  Copyright terms: Public domain W3C validator