| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snnen2o | Structured version Visualization version GIF version | ||
| Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.) Avoid ax-pow 5304, ax-un 7671. (Revised by BTernaryTau, 1-Dec-2024.) |
| Ref | Expression |
|---|---|
| snnen2o | ⊢ ¬ {𝐴} ≈ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 8396 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
| 2 | 0ex 5246 | . . . . . . . . 9 ⊢ ∅ ∈ V | |
| 3 | 1oex 8398 | . . . . . . . . 9 ⊢ 1o ∈ V | |
| 4 | 1n0 8406 | . . . . . . . . . 10 ⊢ 1o ≠ ∅ | |
| 5 | 4 | necomi 2979 | . . . . . . . . 9 ⊢ ∅ ≠ 1o |
| 6 | prnesn 4811 | . . . . . . . . 9 ⊢ ((∅ ∈ V ∧ 1o ∈ V ∧ ∅ ≠ 1o) → {∅, 1o} ≠ {𝑥}) | |
| 7 | 2, 3, 5, 6 | mp3an 1463 | . . . . . . . 8 ⊢ {∅, 1o} ≠ {𝑥} |
| 8 | 1, 7 | eqnetri 2995 | . . . . . . 7 ⊢ 2o ≠ {𝑥} |
| 9 | 8 | neii 2927 | . . . . . 6 ⊢ ¬ 2o = {𝑥} |
| 10 | 9 | nex 1800 | . . . . 5 ⊢ ¬ ∃𝑥2o = {𝑥} |
| 11 | 2on0 8402 | . . . . . 6 ⊢ 2o ≠ ∅ | |
| 12 | f1cdmsn 7219 | . . . . . 6 ⊢ ((◡𝑓:2o–1-1→{𝐴} ∧ 2o ≠ ∅) → ∃𝑥2o = {𝑥}) | |
| 13 | 11, 12 | mpan2 691 | . . . . 5 ⊢ (◡𝑓:2o–1-1→{𝐴} → ∃𝑥2o = {𝑥}) |
| 14 | 10, 13 | mto 197 | . . . 4 ⊢ ¬ ◡𝑓:2o–1-1→{𝐴} |
| 15 | f1ocnv 6776 | . . . . 5 ⊢ (𝑓:{𝐴}–1-1-onto→2o → ◡𝑓:2o–1-1-onto→{𝐴}) | |
| 16 | f1of1 6763 | . . . . 5 ⊢ (◡𝑓:2o–1-1-onto→{𝐴} → ◡𝑓:2o–1-1→{𝐴}) | |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝑓:{𝐴}–1-1-onto→2o → ◡𝑓:2o–1-1→{𝐴}) |
| 18 | 14, 17 | mto 197 | . . 3 ⊢ ¬ 𝑓:{𝐴}–1-1-onto→2o |
| 19 | 18 | nex 1800 | . 2 ⊢ ¬ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o |
| 20 | snex 5375 | . . 3 ⊢ {𝐴} ∈ V | |
| 21 | 2oex 8399 | . . 3 ⊢ 2o ∈ V | |
| 22 | breng 8881 | . . 3 ⊢ (({𝐴} ∈ V ∧ 2o ∈ V) → ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o)) | |
| 23 | 20, 21, 22 | mp2an 692 | . 2 ⊢ ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o) |
| 24 | 19, 23 | mtbir 323 | 1 ⊢ ¬ {𝐴} ≈ 2o |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 ∅c0 4284 {csn 4577 {cpr 4579 class class class wbr 5092 ◡ccnv 5618 –1-1→wf1 6479 –1-1-onto→wf1o 6481 1oc1o 8381 2oc2o 8382 ≈ cen 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-1o 8388 df-2o 8389 df-en 8873 |
| This theorem is referenced by: 1sdom2 9137 1sdom2dom 9143 pr2ne 9899 pmtrsn 19398 trivnsimpgd 19978 |
| Copyright terms: Public domain | W3C validator |