![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snnen2o | Structured version Visualization version GIF version |
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.) Avoid ax-pow 5371, ax-un 7754. (Revised by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
snnen2o | ⊢ ¬ {𝐴} ≈ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 8513 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
2 | 0ex 5313 | . . . . . . . . 9 ⊢ ∅ ∈ V | |
3 | 1oex 8515 | . . . . . . . . 9 ⊢ 1o ∈ V | |
4 | 1n0 8525 | . . . . . . . . . 10 ⊢ 1o ≠ ∅ | |
5 | 4 | necomi 2993 | . . . . . . . . 9 ⊢ ∅ ≠ 1o |
6 | prnesn 4865 | . . . . . . . . 9 ⊢ ((∅ ∈ V ∧ 1o ∈ V ∧ ∅ ≠ 1o) → {∅, 1o} ≠ {𝑥}) | |
7 | 2, 3, 5, 6 | mp3an 1460 | . . . . . . . 8 ⊢ {∅, 1o} ≠ {𝑥} |
8 | 1, 7 | eqnetri 3009 | . . . . . . 7 ⊢ 2o ≠ {𝑥} |
9 | 8 | neii 2940 | . . . . . 6 ⊢ ¬ 2o = {𝑥} |
10 | 9 | nex 1797 | . . . . 5 ⊢ ¬ ∃𝑥2o = {𝑥} |
11 | 2on0 8521 | . . . . . 6 ⊢ 2o ≠ ∅ | |
12 | f1cdmsn 7302 | . . . . . 6 ⊢ ((◡𝑓:2o–1-1→{𝐴} ∧ 2o ≠ ∅) → ∃𝑥2o = {𝑥}) | |
13 | 11, 12 | mpan2 691 | . . . . 5 ⊢ (◡𝑓:2o–1-1→{𝐴} → ∃𝑥2o = {𝑥}) |
14 | 10, 13 | mto 197 | . . . 4 ⊢ ¬ ◡𝑓:2o–1-1→{𝐴} |
15 | f1ocnv 6861 | . . . . 5 ⊢ (𝑓:{𝐴}–1-1-onto→2o → ◡𝑓:2o–1-1-onto→{𝐴}) | |
16 | f1of1 6848 | . . . . 5 ⊢ (◡𝑓:2o–1-1-onto→{𝐴} → ◡𝑓:2o–1-1→{𝐴}) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝑓:{𝐴}–1-1-onto→2o → ◡𝑓:2o–1-1→{𝐴}) |
18 | 14, 17 | mto 197 | . . 3 ⊢ ¬ 𝑓:{𝐴}–1-1-onto→2o |
19 | 18 | nex 1797 | . 2 ⊢ ¬ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o |
20 | snex 5442 | . . 3 ⊢ {𝐴} ∈ V | |
21 | 2oex 8516 | . . 3 ⊢ 2o ∈ V | |
22 | breng 8993 | . . 3 ⊢ (({𝐴} ∈ V ∧ 2o ∈ V) → ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o)) | |
23 | 20, 21, 22 | mp2an 692 | . 2 ⊢ ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o) |
24 | 19, 23 | mtbir 323 | 1 ⊢ ¬ {𝐴} ≈ 2o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 ∅c0 4339 {csn 4631 {cpr 4633 class class class wbr 5148 ◡ccnv 5688 –1-1→wf1 6560 –1-1-onto→wf1o 6562 1oc1o 8498 2oc2o 8499 ≈ cen 8981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-1o 8505 df-2o 8506 df-en 8985 |
This theorem is referenced by: 1sdom2 9274 1sdom2dom 9281 pr2ne 10042 pmtrsn 19552 trivnsimpgd 20132 |
Copyright terms: Public domain | W3C validator |