MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snnen2o Structured version   Visualization version   GIF version

Theorem snnen2o 8709
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.)
Assertion
Ref Expression
snnen2o ¬ {𝐴} ≈ 2o

Proof of Theorem snnen2o
StepHypRef Expression
1 1onn 8267 . . . 4 1o ∈ ω
2 php5 8707 . . . 4 (1o ∈ ω → ¬ 1o ≈ suc 1o)
31, 2ax-mp 5 . . 3 ¬ 1o ≈ suc 1o
4 ensn1g 8576 . . 3 (𝐴 ∈ V → {𝐴} ≈ 1o)
5 df-2o 8105 . . . . . 6 2o = suc 1o
65eqcomi 2832 . . . . 5 suc 1o = 2o
76breq2i 5076 . . . 4 (1o ≈ suc 1o ↔ 1o ≈ 2o)
8 ensymb 8559 . . . . . 6 ({𝐴} ≈ 1o ↔ 1o ≈ {𝐴})
9 entr 8563 . . . . . . 7 ((1o ≈ {𝐴} ∧ {𝐴} ≈ 2o) → 1o ≈ 2o)
109ex 415 . . . . . 6 (1o ≈ {𝐴} → ({𝐴} ≈ 2o → 1o ≈ 2o))
118, 10sylbi 219 . . . . 5 ({𝐴} ≈ 1o → ({𝐴} ≈ 2o → 1o ≈ 2o))
1211con3rr3 158 . . . 4 (¬ 1o ≈ 2o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o))
137, 12sylnbi 332 . . 3 (¬ 1o ≈ suc 1o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o))
143, 4, 13mpsyl 68 . 2 (𝐴 ∈ V → ¬ {𝐴} ≈ 2o)
15 2on0 8115 . . . 4 2o ≠ ∅
16 ensymb 8559 . . . . 5 (∅ ≈ 2o ↔ 2o ≈ ∅)
17 en0 8574 . . . . 5 (2o ≈ ∅ ↔ 2o = ∅)
1816, 17bitri 277 . . . 4 (∅ ≈ 2o ↔ 2o = ∅)
1915, 18nemtbir 3114 . . 3 ¬ ∅ ≈ 2o
20 snprc 4655 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
2120biimpi 218 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
2221breq1d 5078 . . 3 𝐴 ∈ V → ({𝐴} ≈ 2o ↔ ∅ ≈ 2o))
2319, 22mtbiri 329 . 2 𝐴 ∈ V → ¬ {𝐴} ≈ 2o)
2414, 23pm2.61i 184 1 ¬ {𝐴} ≈ 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2114  Vcvv 3496  c0 4293  {csn 4569   class class class wbr 5068  suc csuc 6195  ωcom 7582  1oc1o 8097  2oc2o 8098  cen 8508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-1o 8104  df-2o 8105  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514
This theorem is referenced by:  pmtrsn  18649  trivnsimpgd  19221
  Copyright terms: Public domain W3C validator