Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snnen2o | Structured version Visualization version GIF version |
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.) Avoid ax-pow 5288, ax-un 7588. (Revised by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
snnen2o | ⊢ ¬ {𝐴} ≈ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 8305 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
2 | 0ex 5231 | . . . . . . . . 9 ⊢ ∅ ∈ V | |
3 | 1oex 8307 | . . . . . . . . 9 ⊢ 1o ∈ V | |
4 | 1n0 8318 | . . . . . . . . . 10 ⊢ 1o ≠ ∅ | |
5 | 4 | necomi 2998 | . . . . . . . . 9 ⊢ ∅ ≠ 1o |
6 | prnesn 4790 | . . . . . . . . 9 ⊢ ((∅ ∈ V ∧ 1o ∈ V ∧ ∅ ≠ 1o) → {∅, 1o} ≠ {𝑥}) | |
7 | 2, 3, 5, 6 | mp3an 1460 | . . . . . . . 8 ⊢ {∅, 1o} ≠ {𝑥} |
8 | 1, 7 | eqnetri 3014 | . . . . . . 7 ⊢ 2o ≠ {𝑥} |
9 | 8 | neii 2945 | . . . . . 6 ⊢ ¬ 2o = {𝑥} |
10 | 9 | nex 1803 | . . . . 5 ⊢ ¬ ∃𝑥2o = {𝑥} |
11 | 2on0 8313 | . . . . . 6 ⊢ 2o ≠ ∅ | |
12 | f1cdmsn 7154 | . . . . . 6 ⊢ ((◡𝑓:2o–1-1→{𝐴} ∧ 2o ≠ ∅) → ∃𝑥2o = {𝑥}) | |
13 | 11, 12 | mpan2 688 | . . . . 5 ⊢ (◡𝑓:2o–1-1→{𝐴} → ∃𝑥2o = {𝑥}) |
14 | 10, 13 | mto 196 | . . . 4 ⊢ ¬ ◡𝑓:2o–1-1→{𝐴} |
15 | f1ocnv 6728 | . . . . 5 ⊢ (𝑓:{𝐴}–1-1-onto→2o → ◡𝑓:2o–1-1-onto→{𝐴}) | |
16 | f1of1 6715 | . . . . 5 ⊢ (◡𝑓:2o–1-1-onto→{𝐴} → ◡𝑓:2o–1-1→{𝐴}) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝑓:{𝐴}–1-1-onto→2o → ◡𝑓:2o–1-1→{𝐴}) |
18 | 14, 17 | mto 196 | . . 3 ⊢ ¬ 𝑓:{𝐴}–1-1-onto→2o |
19 | 18 | nex 1803 | . 2 ⊢ ¬ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o |
20 | snex 5354 | . . 3 ⊢ {𝐴} ∈ V | |
21 | 2oex 8308 | . . 3 ⊢ 2o ∈ V | |
22 | breng 8742 | . . 3 ⊢ (({𝐴} ∈ V ∧ 2o ∈ V) → ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o)) | |
23 | 20, 21, 22 | mp2an 689 | . 2 ⊢ ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o) |
24 | 19, 23 | mtbir 323 | 1 ⊢ ¬ {𝐴} ≈ 2o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∅c0 4256 {csn 4561 {cpr 4563 class class class wbr 5074 ◡ccnv 5588 –1-1→wf1 6430 –1-1-onto→wf1o 6432 1oc1o 8290 2oc2o 8291 ≈ cen 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-1o 8297 df-2o 8298 df-en 8734 |
This theorem is referenced by: pmtrsn 19127 trivnsimpgd 19700 |
Copyright terms: Public domain | W3C validator |