MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snnen2o Structured version   Visualization version   GIF version

Theorem snnen2o 8691
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.)
Assertion
Ref Expression
snnen2o ¬ {𝐴} ≈ 2o

Proof of Theorem snnen2o
StepHypRef Expression
1 1onn 8248 . . . 4 1o ∈ ω
2 php5 8689 . . . 4 (1o ∈ ω → ¬ 1o ≈ suc 1o)
31, 2ax-mp 5 . . 3 ¬ 1o ≈ suc 1o
4 ensn1g 8557 . . 3 (𝐴 ∈ V → {𝐴} ≈ 1o)
5 df-2o 8086 . . . . . 6 2o = suc 1o
65eqcomi 2807 . . . . 5 suc 1o = 2o
76breq2i 5038 . . . 4 (1o ≈ suc 1o ↔ 1o ≈ 2o)
8 ensymb 8540 . . . . . 6 ({𝐴} ≈ 1o ↔ 1o ≈ {𝐴})
9 entr 8544 . . . . . . 7 ((1o ≈ {𝐴} ∧ {𝐴} ≈ 2o) → 1o ≈ 2o)
109ex 416 . . . . . 6 (1o ≈ {𝐴} → ({𝐴} ≈ 2o → 1o ≈ 2o))
118, 10sylbi 220 . . . . 5 ({𝐴} ≈ 1o → ({𝐴} ≈ 2o → 1o ≈ 2o))
1211con3rr3 158 . . . 4 (¬ 1o ≈ 2o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o))
137, 12sylnbi 333 . . 3 (¬ 1o ≈ suc 1o → ({𝐴} ≈ 1o → ¬ {𝐴} ≈ 2o))
143, 4, 13mpsyl 68 . 2 (𝐴 ∈ V → ¬ {𝐴} ≈ 2o)
15 2on0 8096 . . . 4 2o ≠ ∅
16 ensymb 8540 . . . . 5 (∅ ≈ 2o ↔ 2o ≈ ∅)
17 en0 8555 . . . . 5 (2o ≈ ∅ ↔ 2o = ∅)
1816, 17bitri 278 . . . 4 (∅ ≈ 2o ↔ 2o = ∅)
1915, 18nemtbir 3082 . . 3 ¬ ∅ ≈ 2o
20 snprc 4613 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
2120biimpi 219 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
2221breq1d 5040 . . 3 𝐴 ∈ V → ({𝐴} ≈ 2o ↔ ∅ ≈ 2o))
2319, 22mtbiri 330 . 2 𝐴 ∈ V → ¬ {𝐴} ≈ 2o)
2414, 23pm2.61i 185 1 ¬ {𝐴} ≈ 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1538  wcel 2111  Vcvv 3441  c0 4243  {csn 4525   class class class wbr 5030  suc csuc 6161  ωcom 7560  1oc1o 8078  2oc2o 8079  cen 8489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495
This theorem is referenced by:  pmtrsn  18639  trivnsimpgd  19212
  Copyright terms: Public domain W3C validator