MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snnen2o Structured version   Visualization version   GIF version

Theorem snnen2o 9184
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.) Avoid ax-pow 5320, ax-un 7711. (Revised by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
snnen2o ¬ {𝐴} ≈ 2o

Proof of Theorem snnen2o
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df2o3 8442 . . . . . . . 8 2o = {∅, 1o}
2 0ex 5262 . . . . . . . . 9 ∅ ∈ V
3 1oex 8444 . . . . . . . . 9 1o ∈ V
4 1n0 8452 . . . . . . . . . 10 1o ≠ ∅
54necomi 2979 . . . . . . . . 9 ∅ ≠ 1o
6 prnesn 4824 . . . . . . . . 9 ((∅ ∈ V ∧ 1o ∈ V ∧ ∅ ≠ 1o) → {∅, 1o} ≠ {𝑥})
72, 3, 5, 6mp3an 1463 . . . . . . . 8 {∅, 1o} ≠ {𝑥}
81, 7eqnetri 2995 . . . . . . 7 2o ≠ {𝑥}
98neii 2927 . . . . . 6 ¬ 2o = {𝑥}
109nex 1800 . . . . 5 ¬ ∃𝑥2o = {𝑥}
11 2on0 8448 . . . . . 6 2o ≠ ∅
12 f1cdmsn 7257 . . . . . 6 ((𝑓:2o1-1→{𝐴} ∧ 2o ≠ ∅) → ∃𝑥2o = {𝑥})
1311, 12mpan2 691 . . . . 5 (𝑓:2o1-1→{𝐴} → ∃𝑥2o = {𝑥})
1410, 13mto 197 . . . 4 ¬ 𝑓:2o1-1→{𝐴}
15 f1ocnv 6812 . . . . 5 (𝑓:{𝐴}–1-1-onto→2o𝑓:2o1-1-onto→{𝐴})
16 f1of1 6799 . . . . 5 (𝑓:2o1-1-onto→{𝐴} → 𝑓:2o1-1→{𝐴})
1715, 16syl 17 . . . 4 (𝑓:{𝐴}–1-1-onto→2o𝑓:2o1-1→{𝐴})
1814, 17mto 197 . . 3 ¬ 𝑓:{𝐴}–1-1-onto→2o
1918nex 1800 . 2 ¬ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o
20 snex 5391 . . 3 {𝐴} ∈ V
21 2oex 8445 . . 3 2o ∈ V
22 breng 8927 . . 3 (({𝐴} ∈ V ∧ 2o ∈ V) → ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o))
2320, 21, 22mp2an 692 . 2 ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o)
2419, 23mtbir 323 1 ¬ {𝐴} ≈ 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3447  c0 4296  {csn 4589  {cpr 4591   class class class wbr 5107  ccnv 5637  1-1wf1 6508  1-1-ontowf1o 6510  1oc1o 8427  2oc2o 8428  cen 8915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-1o 8434  df-2o 8435  df-en 8919
This theorem is referenced by:  1sdom2  9187  1sdom2dom  9194  pr2ne  9957  pmtrsn  19449  trivnsimpgd  20029
  Copyright terms: Public domain W3C validator