MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snnen2o Structured version   Visualization version   GIF version

Theorem snnen2o 9079
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.) Avoid ax-pow 5303, ax-un 7628. (Revised by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
snnen2o ¬ {𝐴} ≈ 2o

Proof of Theorem snnen2o
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df2o3 8352 . . . . . . . 8 2o = {∅, 1o}
2 0ex 5246 . . . . . . . . 9 ∅ ∈ V
3 1oex 8354 . . . . . . . . 9 1o ∈ V
4 1n0 8366 . . . . . . . . . 10 1o ≠ ∅
54necomi 2996 . . . . . . . . 9 ∅ ≠ 1o
6 prnesn 4802 . . . . . . . . 9 ((∅ ∈ V ∧ 1o ∈ V ∧ ∅ ≠ 1o) → {∅, 1o} ≠ {𝑥})
72, 3, 5, 6mp3an 1460 . . . . . . . 8 {∅, 1o} ≠ {𝑥}
81, 7eqnetri 3012 . . . . . . 7 2o ≠ {𝑥}
98neii 2943 . . . . . 6 ¬ 2o = {𝑥}
109nex 1801 . . . . 5 ¬ ∃𝑥2o = {𝑥}
11 2on0 8360 . . . . . 6 2o ≠ ∅
12 f1cdmsn 7193 . . . . . 6 ((𝑓:2o1-1→{𝐴} ∧ 2o ≠ ∅) → ∃𝑥2o = {𝑥})
1311, 12mpan2 688 . . . . 5 (𝑓:2o1-1→{𝐴} → ∃𝑥2o = {𝑥})
1410, 13mto 196 . . . 4 ¬ 𝑓:2o1-1→{𝐴}
15 f1ocnv 6765 . . . . 5 (𝑓:{𝐴}–1-1-onto→2o𝑓:2o1-1-onto→{𝐴})
16 f1of1 6752 . . . . 5 (𝑓:2o1-1-onto→{𝐴} → 𝑓:2o1-1→{𝐴})
1715, 16syl 17 . . . 4 (𝑓:{𝐴}–1-1-onto→2o𝑓:2o1-1→{𝐴})
1814, 17mto 196 . . 3 ¬ 𝑓:{𝐴}–1-1-onto→2o
1918nex 1801 . 2 ¬ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o
20 snex 5369 . . 3 {𝐴} ∈ V
21 2oex 8355 . . 3 2o ∈ V
22 breng 8790 . . 3 (({𝐴} ∈ V ∧ 2o ∈ V) → ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o))
2320, 21, 22mp2an 689 . 2 ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o)
2419, 23mtbir 322 1 ¬ {𝐴} ≈ 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1540  wex 1780  wcel 2105  wne 2941  Vcvv 3441  c0 4267  {csn 4571  {cpr 4573   class class class wbr 5087  ccnv 5606  1-1wf1 6462  1-1-ontowf1o 6464  1oc1o 8337  2oc2o 8338  cen 8778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-1o 8344  df-2o 8345  df-en 8782
This theorem is referenced by:  1sdom2  9082  1sdom2dom  9089  pr2ne  9833  pmtrsn  19196  trivnsimpgd  19768
  Copyright terms: Public domain W3C validator