MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snnen2o Structured version   Visualization version   GIF version

Theorem snnen2o 9026
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.) Avoid ax-pow 5288, ax-un 7588. (Revised by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
snnen2o ¬ {𝐴} ≈ 2o

Proof of Theorem snnen2o
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df2o3 8305 . . . . . . . 8 2o = {∅, 1o}
2 0ex 5231 . . . . . . . . 9 ∅ ∈ V
3 1oex 8307 . . . . . . . . 9 1o ∈ V
4 1n0 8318 . . . . . . . . . 10 1o ≠ ∅
54necomi 2998 . . . . . . . . 9 ∅ ≠ 1o
6 prnesn 4790 . . . . . . . . 9 ((∅ ∈ V ∧ 1o ∈ V ∧ ∅ ≠ 1o) → {∅, 1o} ≠ {𝑥})
72, 3, 5, 6mp3an 1460 . . . . . . . 8 {∅, 1o} ≠ {𝑥}
81, 7eqnetri 3014 . . . . . . 7 2o ≠ {𝑥}
98neii 2945 . . . . . 6 ¬ 2o = {𝑥}
109nex 1803 . . . . 5 ¬ ∃𝑥2o = {𝑥}
11 2on0 8313 . . . . . 6 2o ≠ ∅
12 f1cdmsn 7154 . . . . . 6 ((𝑓:2o1-1→{𝐴} ∧ 2o ≠ ∅) → ∃𝑥2o = {𝑥})
1311, 12mpan2 688 . . . . 5 (𝑓:2o1-1→{𝐴} → ∃𝑥2o = {𝑥})
1410, 13mto 196 . . . 4 ¬ 𝑓:2o1-1→{𝐴}
15 f1ocnv 6728 . . . . 5 (𝑓:{𝐴}–1-1-onto→2o𝑓:2o1-1-onto→{𝐴})
16 f1of1 6715 . . . . 5 (𝑓:2o1-1-onto→{𝐴} → 𝑓:2o1-1→{𝐴})
1715, 16syl 17 . . . 4 (𝑓:{𝐴}–1-1-onto→2o𝑓:2o1-1→{𝐴})
1814, 17mto 196 . . 3 ¬ 𝑓:{𝐴}–1-1-onto→2o
1918nex 1803 . 2 ¬ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o
20 snex 5354 . . 3 {𝐴} ∈ V
21 2oex 8308 . . 3 2o ∈ V
22 breng 8742 . . 3 (({𝐴} ∈ V ∧ 2o ∈ V) → ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o))
2320, 21, 22mp2an 689 . 2 ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o)
2419, 23mtbir 323 1 ¬ {𝐴} ≈ 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1539  wex 1782  wcel 2106  wne 2943  Vcvv 3432  c0 4256  {csn 4561  {cpr 4563   class class class wbr 5074  ccnv 5588  1-1wf1 6430  1-1-ontowf1o 6432  1oc1o 8290  2oc2o 8291  cen 8730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-1o 8297  df-2o 8298  df-en 8734
This theorem is referenced by:  pmtrsn  19127  trivnsimpgd  19700
  Copyright terms: Public domain W3C validator