MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snnen2o Structured version   Visualization version   GIF version

Theorem snnen2o 9134
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.) Avoid ax-pow 5304, ax-un 7671. (Revised by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
snnen2o ¬ {𝐴} ≈ 2o

Proof of Theorem snnen2o
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df2o3 8396 . . . . . . . 8 2o = {∅, 1o}
2 0ex 5246 . . . . . . . . 9 ∅ ∈ V
3 1oex 8398 . . . . . . . . 9 1o ∈ V
4 1n0 8406 . . . . . . . . . 10 1o ≠ ∅
54necomi 2979 . . . . . . . . 9 ∅ ≠ 1o
6 prnesn 4811 . . . . . . . . 9 ((∅ ∈ V ∧ 1o ∈ V ∧ ∅ ≠ 1o) → {∅, 1o} ≠ {𝑥})
72, 3, 5, 6mp3an 1463 . . . . . . . 8 {∅, 1o} ≠ {𝑥}
81, 7eqnetri 2995 . . . . . . 7 2o ≠ {𝑥}
98neii 2927 . . . . . 6 ¬ 2o = {𝑥}
109nex 1800 . . . . 5 ¬ ∃𝑥2o = {𝑥}
11 2on0 8402 . . . . . 6 2o ≠ ∅
12 f1cdmsn 7219 . . . . . 6 ((𝑓:2o1-1→{𝐴} ∧ 2o ≠ ∅) → ∃𝑥2o = {𝑥})
1311, 12mpan2 691 . . . . 5 (𝑓:2o1-1→{𝐴} → ∃𝑥2o = {𝑥})
1410, 13mto 197 . . . 4 ¬ 𝑓:2o1-1→{𝐴}
15 f1ocnv 6776 . . . . 5 (𝑓:{𝐴}–1-1-onto→2o𝑓:2o1-1-onto→{𝐴})
16 f1of1 6763 . . . . 5 (𝑓:2o1-1-onto→{𝐴} → 𝑓:2o1-1→{𝐴})
1715, 16syl 17 . . . 4 (𝑓:{𝐴}–1-1-onto→2o𝑓:2o1-1→{𝐴})
1814, 17mto 197 . . 3 ¬ 𝑓:{𝐴}–1-1-onto→2o
1918nex 1800 . 2 ¬ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o
20 snex 5375 . . 3 {𝐴} ∈ V
21 2oex 8399 . . 3 2o ∈ V
22 breng 8881 . . 3 (({𝐴} ∈ V ∧ 2o ∈ V) → ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o))
2320, 21, 22mp2an 692 . 2 ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o)
2419, 23mtbir 323 1 ¬ {𝐴} ≈ 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3436  c0 4284  {csn 4577  {cpr 4579   class class class wbr 5092  ccnv 5618  1-1wf1 6479  1-1-ontowf1o 6481  1oc1o 8381  2oc2o 8382  cen 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-1o 8388  df-2o 8389  df-en 8873
This theorem is referenced by:  1sdom2  9137  1sdom2dom  9143  pr2ne  9899  pmtrsn  19398  trivnsimpgd  19978
  Copyright terms: Public domain W3C validator