MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snnen2o Structured version   Visualization version   GIF version

Theorem snnen2o 9161
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.) Avoid ax-pow 5315, ax-un 7691. (Revised by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
snnen2o ¬ {𝐴} ≈ 2o

Proof of Theorem snnen2o
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df2o3 8419 . . . . . . . 8 2o = {∅, 1o}
2 0ex 5257 . . . . . . . . 9 ∅ ∈ V
3 1oex 8421 . . . . . . . . 9 1o ∈ V
4 1n0 8429 . . . . . . . . . 10 1o ≠ ∅
54necomi 2979 . . . . . . . . 9 ∅ ≠ 1o
6 prnesn 4820 . . . . . . . . 9 ((∅ ∈ V ∧ 1o ∈ V ∧ ∅ ≠ 1o) → {∅, 1o} ≠ {𝑥})
72, 3, 5, 6mp3an 1463 . . . . . . . 8 {∅, 1o} ≠ {𝑥}
81, 7eqnetri 2995 . . . . . . 7 2o ≠ {𝑥}
98neii 2927 . . . . . 6 ¬ 2o = {𝑥}
109nex 1800 . . . . 5 ¬ ∃𝑥2o = {𝑥}
11 2on0 8425 . . . . . 6 2o ≠ ∅
12 f1cdmsn 7239 . . . . . 6 ((𝑓:2o1-1→{𝐴} ∧ 2o ≠ ∅) → ∃𝑥2o = {𝑥})
1311, 12mpan2 691 . . . . 5 (𝑓:2o1-1→{𝐴} → ∃𝑥2o = {𝑥})
1410, 13mto 197 . . . 4 ¬ 𝑓:2o1-1→{𝐴}
15 f1ocnv 6794 . . . . 5 (𝑓:{𝐴}–1-1-onto→2o𝑓:2o1-1-onto→{𝐴})
16 f1of1 6781 . . . . 5 (𝑓:2o1-1-onto→{𝐴} → 𝑓:2o1-1→{𝐴})
1715, 16syl 17 . . . 4 (𝑓:{𝐴}–1-1-onto→2o𝑓:2o1-1→{𝐴})
1814, 17mto 197 . . 3 ¬ 𝑓:{𝐴}–1-1-onto→2o
1918nex 1800 . 2 ¬ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o
20 snex 5386 . . 3 {𝐴} ∈ V
21 2oex 8422 . . 3 2o ∈ V
22 breng 8904 . . 3 (({𝐴} ∈ V ∧ 2o ∈ V) → ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o))
2320, 21, 22mp2an 692 . 2 ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o)
2419, 23mtbir 323 1 ¬ {𝐴} ≈ 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3444  c0 4292  {csn 4585  {cpr 4587   class class class wbr 5102  ccnv 5630  1-1wf1 6496  1-1-ontowf1o 6498  1oc1o 8404  2oc2o 8405  cen 8892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-1o 8411  df-2o 8412  df-en 8896
This theorem is referenced by:  1sdom2  9164  1sdom2dom  9170  pr2ne  9933  pmtrsn  19425  trivnsimpgd  20005
  Copyright terms: Public domain W3C validator