Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snnen2o | Structured version Visualization version GIF version |
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.) Avoid ax-pow 5303, ax-un 7628. (Revised by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
snnen2o | ⊢ ¬ {𝐴} ≈ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 8352 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
2 | 0ex 5246 | . . . . . . . . 9 ⊢ ∅ ∈ V | |
3 | 1oex 8354 | . . . . . . . . 9 ⊢ 1o ∈ V | |
4 | 1n0 8366 | . . . . . . . . . 10 ⊢ 1o ≠ ∅ | |
5 | 4 | necomi 2996 | . . . . . . . . 9 ⊢ ∅ ≠ 1o |
6 | prnesn 4802 | . . . . . . . . 9 ⊢ ((∅ ∈ V ∧ 1o ∈ V ∧ ∅ ≠ 1o) → {∅, 1o} ≠ {𝑥}) | |
7 | 2, 3, 5, 6 | mp3an 1460 | . . . . . . . 8 ⊢ {∅, 1o} ≠ {𝑥} |
8 | 1, 7 | eqnetri 3012 | . . . . . . 7 ⊢ 2o ≠ {𝑥} |
9 | 8 | neii 2943 | . . . . . 6 ⊢ ¬ 2o = {𝑥} |
10 | 9 | nex 1801 | . . . . 5 ⊢ ¬ ∃𝑥2o = {𝑥} |
11 | 2on0 8360 | . . . . . 6 ⊢ 2o ≠ ∅ | |
12 | f1cdmsn 7193 | . . . . . 6 ⊢ ((◡𝑓:2o–1-1→{𝐴} ∧ 2o ≠ ∅) → ∃𝑥2o = {𝑥}) | |
13 | 11, 12 | mpan2 688 | . . . . 5 ⊢ (◡𝑓:2o–1-1→{𝐴} → ∃𝑥2o = {𝑥}) |
14 | 10, 13 | mto 196 | . . . 4 ⊢ ¬ ◡𝑓:2o–1-1→{𝐴} |
15 | f1ocnv 6765 | . . . . 5 ⊢ (𝑓:{𝐴}–1-1-onto→2o → ◡𝑓:2o–1-1-onto→{𝐴}) | |
16 | f1of1 6752 | . . . . 5 ⊢ (◡𝑓:2o–1-1-onto→{𝐴} → ◡𝑓:2o–1-1→{𝐴}) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝑓:{𝐴}–1-1-onto→2o → ◡𝑓:2o–1-1→{𝐴}) |
18 | 14, 17 | mto 196 | . . 3 ⊢ ¬ 𝑓:{𝐴}–1-1-onto→2o |
19 | 18 | nex 1801 | . 2 ⊢ ¬ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o |
20 | snex 5369 | . . 3 ⊢ {𝐴} ∈ V | |
21 | 2oex 8355 | . . 3 ⊢ 2o ∈ V | |
22 | breng 8790 | . . 3 ⊢ (({𝐴} ∈ V ∧ 2o ∈ V) → ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o)) | |
23 | 20, 21, 22 | mp2an 689 | . 2 ⊢ ({𝐴} ≈ 2o ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→2o) |
24 | 19, 23 | mtbir 322 | 1 ⊢ ¬ {𝐴} ≈ 2o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ≠ wne 2941 Vcvv 3441 ∅c0 4267 {csn 4571 {cpr 4573 class class class wbr 5087 ◡ccnv 5606 –1-1→wf1 6462 –1-1-onto→wf1o 6464 1oc1o 8337 2oc2o 8338 ≈ cen 8778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-1o 8344 df-2o 8345 df-en 8782 |
This theorem is referenced by: 1sdom2 9082 1sdom2dom 9089 pr2ne 9833 pmtrsn 19196 trivnsimpgd 19768 |
Copyright terms: Public domain | W3C validator |