| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prsrcmpltd | Structured version Visualization version GIF version | ||
| Description: If a statement is true for all pairs of elements of a class, all pairs of elements of its complement relative to a second class, and all pairs with one element in each, then it is true for all pairs of elements of the second class. (Contributed by BTernaryTau, 27-Sep-2023.) |
| Ref | Expression |
|---|---|
| prsrcmpltd.1 | ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → 𝜓)) |
| prsrcmpltd.2 | ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ (𝐵 ∖ 𝐴)) → 𝜓)) |
| prsrcmpltd.3 | ⊢ (𝜑 → ((𝐶 ∈ (𝐵 ∖ 𝐴) ∧ 𝐷 ∈ 𝐴) → 𝜓)) |
| prsrcmpltd.4 | ⊢ (𝜑 → ((𝐶 ∈ (𝐵 ∖ 𝐴) ∧ 𝐷 ∈ (𝐵 ∖ 𝐴)) → 𝜓)) |
| Ref | Expression |
|---|---|
| prsrcmpltd | ⊢ (𝜑 → ((𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prsrcmpltd.1 | . . . . . . 7 ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → 𝜓)) | |
| 2 | 1 | expdimp 452 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐷 ∈ 𝐴 → 𝜓)) |
| 3 | prsrcmpltd.2 | . . . . . . 7 ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ (𝐵 ∖ 𝐴)) → 𝜓)) | |
| 4 | 3 | expdimp 452 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐷 ∈ (𝐵 ∖ 𝐴) → 𝜓)) |
| 5 | 2, 4 | srcmpltd 35094 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐷 ∈ 𝐵 → 𝜓)) |
| 6 | 5 | impancom 451 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ 𝐵) → (𝐶 ∈ 𝐴 → 𝜓)) |
| 7 | prsrcmpltd.3 | . . . . . . 7 ⊢ (𝜑 → ((𝐶 ∈ (𝐵 ∖ 𝐴) ∧ 𝐷 ∈ 𝐴) → 𝜓)) | |
| 8 | 7 | expdimp 452 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵 ∖ 𝐴)) → (𝐷 ∈ 𝐴 → 𝜓)) |
| 9 | prsrcmpltd.4 | . . . . . . 7 ⊢ (𝜑 → ((𝐶 ∈ (𝐵 ∖ 𝐴) ∧ 𝐷 ∈ (𝐵 ∖ 𝐴)) → 𝜓)) | |
| 10 | 9 | expdimp 452 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵 ∖ 𝐴)) → (𝐷 ∈ (𝐵 ∖ 𝐴) → 𝜓)) |
| 11 | 8, 10 | srcmpltd 35094 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ (𝐵 ∖ 𝐴)) → (𝐷 ∈ 𝐵 → 𝜓)) |
| 12 | 11 | impancom 451 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ 𝐵) → (𝐶 ∈ (𝐵 ∖ 𝐴) → 𝜓)) |
| 13 | 6, 12 | srcmpltd 35094 | . . 3 ⊢ ((𝜑 ∧ 𝐷 ∈ 𝐵) → (𝐶 ∈ 𝐵 → 𝜓)) |
| 14 | 13 | ex 412 | . 2 ⊢ (𝜑 → (𝐷 ∈ 𝐵 → (𝐶 ∈ 𝐵 → 𝜓))) |
| 15 | 14 | impcomd 411 | 1 ⊢ (𝜑 → ((𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∖ cdif 3948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 |
| This theorem is referenced by: f1resrcmplf1d 35101 |
| Copyright terms: Public domain | W3C validator |