Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dff15 | Structured version Visualization version GIF version |
Description: A one-to-one function in terms of different arguments never having the same function value. (Contributed by BTernaryTau, 24-Oct-2023.) |
Ref | Expression |
---|---|
dff15 | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff13 7076 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | |
2 | iman 405 | . . . . . 6 ⊢ (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ¬ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ ¬ 𝑥 = 𝑦)) | |
3 | df-ne 2942 | . . . . . . 7 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | |
4 | 3 | anbi2i 626 | . . . . . 6 ⊢ (((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦) ↔ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ ¬ 𝑥 = 𝑦)) |
5 | 2, 4 | xchbinxr 338 | . . . . 5 ⊢ (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ¬ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) |
6 | 5 | 2ralbii 3090 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) |
7 | ralnex2 3187 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦) ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) | |
8 | 6, 7 | bitri 278 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) |
9 | 8 | anbi2i 626 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) ↔ (𝐹:𝐴⟶𝐵 ∧ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) |
10 | 1, 9 | bitri 278 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ≠ wne 2941 ∀wral 3062 ∃wrex 3063 ⟶wf 6385 –1-1→wf1 6386 ‘cfv 6389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5201 ax-nul 5208 ax-pr 5331 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3417 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-nul 4247 df-if 4449 df-sn 4551 df-pr 4553 df-op 4557 df-uni 4829 df-br 5063 df-opab 5125 df-id 5464 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-iota 6347 df-fun 6391 df-fn 6392 df-f 6393 df-f1 6394 df-fv 6397 |
This theorem is referenced by: umgracycusgr 32842 |
Copyright terms: Public domain | W3C validator |