Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dff15 Structured version   Visualization version   GIF version

Theorem dff15 35047
Description: A one-to-one function in terms of different arguments never having the same function value. (Contributed by BTernaryTau, 24-Oct-2023.)
Assertion
Ref Expression
dff15 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem dff15
StepHypRef Expression
1 dff13 7211 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
2 iman 401 . . . . . 6 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ¬ ((𝐹𝑥) = (𝐹𝑦) ∧ ¬ 𝑥 = 𝑦))
3 df-ne 2926 . . . . . . 7 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
43anbi2i 623 . . . . . 6 (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦) ↔ ((𝐹𝑥) = (𝐹𝑦) ∧ ¬ 𝑥 = 𝑦))
52, 4xchbinxr 335 . . . . 5 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ¬ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
652ralbii 3108 . . . 4 (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 ¬ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
7 ralnex2 3113 . . . 4 (∀𝑥𝐴𝑦𝐴 ¬ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦) ↔ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
86, 7bitri 275 . . 3 (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
98anbi2i 623 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ↔ (𝐹:𝐴𝐵 ∧ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)))
101, 9bitri 275 1 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ¬ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wne 2925  wral 3044  wrex 3053  wf 6495  1-1wf1 6496  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fv 6507
This theorem is referenced by:  umgracycusgr  35114
  Copyright terms: Public domain W3C validator