![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dff15 | Structured version Visualization version GIF version |
Description: A one-to-one function in terms of different arguments never having the same function value. (Contributed by BTernaryTau, 24-Oct-2023.) |
Ref | Expression |
---|---|
dff15 | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff13 7275 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | |
2 | iman 401 | . . . . . 6 ⊢ (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ¬ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ ¬ 𝑥 = 𝑦)) | |
3 | df-ne 2939 | . . . . . . 7 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | |
4 | 3 | anbi2i 623 | . . . . . 6 ⊢ (((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦) ↔ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ ¬ 𝑥 = 𝑦)) |
5 | 2, 4 | xchbinxr 335 | . . . . 5 ⊢ (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ¬ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) |
6 | 5 | 2ralbii 3126 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) |
7 | ralnex2 3131 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦) ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) | |
8 | 6, 7 | bitri 275 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) |
9 | 8 | anbi2i 623 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) ↔ (𝐹:𝐴⟶𝐵 ∧ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) |
10 | 1, 9 | bitri 275 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 ⟶wf 6559 –1-1→wf1 6560 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fv 6571 |
This theorem is referenced by: umgracycusgr 35139 |
Copyright terms: Public domain | W3C validator |