| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > impcomd | Structured version Visualization version GIF version | ||
| Description: Importation deduction with commuted antecedents. (Contributed by Peter Mazsa, 24-Sep-2022.) (Proof shortened by Wolf Lammen, 22-Oct-2022.) |
| Ref | Expression |
|---|---|
| impd.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| impcomd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impd.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com23 86 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sbequ2 2250 ralxfrd 5350 ralxfrd2 5354 iss 5990 dfpo2 6248 funssres 6530 fv3 6844 fmptsnd 7109 resf1extb 7874 frrlem10 8235 wfr3g 8259 nnmord 8557 cfcoflem 10185 nqereu 10842 ltletr 11226 fzind 12592 eqreznegel 12853 xrltletr 13077 xnn0xaddcl 13155 elfzodifsumelfzo 13652 hash2prde 14395 hash3tpde 14418 fundmge2nop0 14427 wrd2ind 14647 swrdccatin1 14649 rlimuni 15475 rlimno1 15579 ndvdssub 16338 lcmfunsnlem2 16569 coprmdvds 16582 coprmdvds2 16583 gsmsymgrfixlem1 19324 lsmdisj2 19579 chfacfisf 22757 chfacfisfcpmat 22758 lmcnp 23207 1stccnp 23365 txlm 23551 fgss2 23777 fgfil 23778 ufileu 23822 rnelfm 23856 fmfnfmlem2 23858 fmfnfmlem4 23860 ufilcmp 23935 cnpfcf 23944 alexsubALTlem2 23951 tsmsxp 24058 ivthlem2 25369 ivthlem3 25370 2sqreultlem 27374 2sqreultblem 27375 2sqreunnltlem 27377 2sqreunnltblem 27378 negsid 27970 bdayon 28196 umgrislfupgrlem 29085 uhgr2edg 29171 wlkv0 29613 usgr2pth 29727 clwlkclwwlklem2 29962 frgrregord013 30357 prsrcmpltd 35047 sat1el2xp 35351 goalrlem 35368 uhgrimedgi 47875 isubgr3stgrlem7 47957 grlimgrtri 47988 pgnbgreunbgrlem2 48102 pgnbgreunbgrlem5 48108 |
| Copyright terms: Public domain | W3C validator |