| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > impcomd | Structured version Visualization version GIF version | ||
| Description: Importation deduction with commuted antecedents. (Contributed by Peter Mazsa, 24-Sep-2022.) (Proof shortened by Wolf Lammen, 22-Oct-2022.) |
| Ref | Expression |
|---|---|
| impd.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| impcomd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impd.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com23 86 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sbequ2 2252 ralxfrd 5346 ralxfrd2 5350 iss 5984 dfpo2 6243 funssres 6525 fv3 6840 fmptsnd 7103 resf1extb 7864 frrlem10 8225 wfr3g 8249 nnmord 8547 cfcoflem 10160 nqereu 10817 ltletr 11202 fzind 12568 eqreznegel 12829 xrltletr 13053 xnn0xaddcl 13131 elfzodifsumelfzo 13628 hash2prde 14374 hash3tpde 14397 fundmge2nop0 14406 wrd2ind 14627 swrdccatin1 14629 rlimuni 15454 rlimno1 15558 ndvdssub 16317 lcmfunsnlem2 16548 coprmdvds 16561 coprmdvds2 16562 gsmsymgrfixlem1 19337 lsmdisj2 19592 chfacfisf 22767 chfacfisfcpmat 22768 lmcnp 23217 1stccnp 23375 txlm 23561 fgss2 23787 fgfil 23788 ufileu 23832 rnelfm 23866 fmfnfmlem2 23868 fmfnfmlem4 23870 ufilcmp 23945 cnpfcf 23954 alexsubALTlem2 23961 tsmsxp 24068 ivthlem2 25378 ivthlem3 25379 2sqreultlem 27383 2sqreultblem 27384 2sqreunnltlem 27386 2sqreunnltblem 27387 negsid 27981 bdayon 28207 umgrislfupgrlem 29098 uhgr2edg 29184 wlkv0 29626 usgr2pth 29740 clwlkclwwlklem2 29975 frgrregord013 30370 prsrcmpltd 35088 r1filimi 35106 sat1el2xp 35411 goalrlem 35428 uhgrimedgi 47920 isubgr3stgrlem7 48002 grlimgrtri 48033 pgnbgreunbgrlem2 48147 pgnbgreunbgrlem5 48153 |
| Copyright terms: Public domain | W3C validator |