Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > impcomd | Structured version Visualization version GIF version |
Description: Importation deduction with commuted antecedents. (Contributed by Peter Mazsa, 24-Sep-2022.) (Proof shortened by Wolf Lammen, 22-Oct-2022.) |
Ref | Expression |
---|---|
impd.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
impcomd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impd.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com23 86 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
3 | 2 | impd 411 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: sbequ2 2240 sbequ2OLD 2241 ralxfrd 5344 ralxfrd2 5348 iss 5960 dfpo2 6219 funssres 6512 fv3 6827 fmptsnd 7078 frrlem10 8156 wfr3g 8183 nnmord 8509 cfcoflem 10098 nqereu 10755 ltletr 11137 fzind 12488 eqreznegel 12744 xrltletr 12961 xnn0xaddcl 13039 elfzodifsumelfzo 13523 hash2prde 14253 fundmge2nop0 14275 wrd2ind 14505 swrdccatin1 14507 rlimuni 15328 rlimno1 15434 ndvdssub 16187 lcmfunsnlem2 16412 coprmdvds 16425 coprmdvds2 16426 gsmsymgrfixlem1 19102 lsmdisj2 19355 chfacfisf 22074 chfacfisfcpmat 22075 lmcnp 22526 1stccnp 22684 txlm 22870 fgss2 23096 fgfil 23097 ufileu 23141 rnelfm 23175 fmfnfmlem2 23177 fmfnfmlem4 23179 ufilcmp 23254 cnpfcf 23263 alexsubALTlem2 23270 tsmsxp 23377 ivthlem2 24687 ivthlem3 24688 2sqreultlem 26666 2sqreultblem 26667 2sqreunnltlem 26669 2sqreunnltblem 26670 umgrislfupgrlem 27600 uhgr2edg 27683 wlkv0 28126 usgr2pth 28240 clwlkclwwlklem2 28472 frgrregord013 28867 prsrcmpltd 33161 sat1el2xp 33447 goalrlem 33464 |
Copyright terms: Public domain | W3C validator |