Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > impcomd | Structured version Visualization version GIF version |
Description: Importation deduction with commuted antecedents. (Contributed by Peter Mazsa, 24-Sep-2022.) (Proof shortened by Wolf Lammen, 22-Oct-2022.) |
Ref | Expression |
---|---|
impd.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
impcomd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impd.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com23 86 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: sbequ2 2244 sbequ2OLD 2245 ralxfrd 5326 ralxfrd2 5330 iss 5932 dfpo2 6188 funssres 6462 fv3 6774 fmptsnd 7023 frrlem10 8082 wfr3g 8109 nnmord 8425 cfcoflem 9959 nqereu 10616 ltletr 10997 fzind 12348 eqreznegel 12603 xrltletr 12820 xnn0xaddcl 12898 elfzodifsumelfzo 13381 hash2prde 14112 fundmge2nop0 14134 wrd2ind 14364 swrdccatin1 14366 rlimuni 15187 rlimno1 15293 ndvdssub 16046 lcmfunsnlem2 16273 coprmdvds 16286 coprmdvds2 16287 gsmsymgrfixlem1 18950 lsmdisj2 19203 chfacfisf 21911 chfacfisfcpmat 21912 lmcnp 22363 1stccnp 22521 txlm 22707 fgss2 22933 fgfil 22934 ufileu 22978 rnelfm 23012 fmfnfmlem2 23014 fmfnfmlem4 23016 ufilcmp 23091 cnpfcf 23100 alexsubALTlem2 23107 tsmsxp 23214 ivthlem2 24521 ivthlem3 24522 2sqreultlem 26500 2sqreultblem 26501 2sqreunnltlem 26503 2sqreunnltblem 26504 umgrislfupgrlem 27395 uhgr2edg 27478 wlkv0 27920 usgr2pth 28033 clwlkclwwlklem2 28265 frgrregord013 28660 prsrcmpltd 32955 sat1el2xp 33241 goalrlem 33258 |
Copyright terms: Public domain | W3C validator |