| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > impcomd | Structured version Visualization version GIF version | ||
| Description: Importation deduction with commuted antecedents. (Contributed by Peter Mazsa, 24-Sep-2022.) (Proof shortened by Wolf Lammen, 22-Oct-2022.) |
| Ref | Expression |
|---|---|
| impd.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| impcomd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impd.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com23 86 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sbequ2 2254 ralxfrd 5348 ralxfrd2 5352 iss 5988 dfpo2 6248 funssres 6530 fv3 6846 fmptsnd 7109 resf1extb 7870 frrlem10 8231 wfr3g 8255 nnmord 8553 cfcoflem 10170 nqereu 10827 ltletr 11212 fzind 12577 eqreznegel 12834 xrltletr 13058 xnn0xaddcl 13136 elfzodifsumelfzo 13633 hash2prde 14379 hash3tpde 14402 fundmge2nop0 14411 wrd2ind 14632 swrdccatin1 14634 rlimuni 15459 rlimno1 15563 ndvdssub 16322 lcmfunsnlem2 16553 coprmdvds 16566 coprmdvds2 16567 gsmsymgrfixlem1 19341 lsmdisj2 19596 chfacfisf 22770 chfacfisfcpmat 22771 lmcnp 23220 1stccnp 23378 txlm 23564 fgss2 23790 fgfil 23791 ufileu 23835 rnelfm 23869 fmfnfmlem2 23871 fmfnfmlem4 23873 ufilcmp 23948 cnpfcf 23957 alexsubALTlem2 23964 tsmsxp 24071 ivthlem2 25381 ivthlem3 25382 2sqreultlem 27386 2sqreultblem 27387 2sqreunnltlem 27389 2sqreunnltblem 27390 negsid 27984 bdayon 28210 umgrislfupgrlem 29102 uhgr2edg 29188 wlkv0 29630 usgr2pth 29744 clwlkclwwlklem2 29982 frgrregord013 30377 prsrcmpltd 35114 r1filimi 35135 sat1el2xp 35444 goalrlem 35461 uhgrimedgi 48014 isubgr3stgrlem7 48096 grlimgrtri 48127 pgnbgreunbgrlem2 48241 pgnbgreunbgrlem5 48247 |
| Copyright terms: Public domain | W3C validator |