| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > impcomd | Structured version Visualization version GIF version | ||
| Description: Importation deduction with commuted antecedents. (Contributed by Peter Mazsa, 24-Sep-2022.) (Proof shortened by Wolf Lammen, 22-Oct-2022.) |
| Ref | Expression |
|---|---|
| impd.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| impcomd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impd.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com23 86 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sbequ2 2249 ralxfrd 5378 ralxfrd2 5382 iss 6022 dfpo2 6285 funssres 6580 fv3 6894 fmptsnd 7161 resf1extb 7930 frrlem10 8294 wfr3g 8321 nnmord 8644 cfcoflem 10286 nqereu 10943 ltletr 11327 fzind 12691 eqreznegel 12950 xrltletr 13173 xnn0xaddcl 13251 elfzodifsumelfzo 13747 hash2prde 14488 hash3tpde 14511 fundmge2nop0 14520 wrd2ind 14741 swrdccatin1 14743 rlimuni 15566 rlimno1 15670 ndvdssub 16428 lcmfunsnlem2 16659 coprmdvds 16672 coprmdvds2 16673 gsmsymgrfixlem1 19408 lsmdisj2 19663 chfacfisf 22792 chfacfisfcpmat 22793 lmcnp 23242 1stccnp 23400 txlm 23586 fgss2 23812 fgfil 23813 ufileu 23857 rnelfm 23891 fmfnfmlem2 23893 fmfnfmlem4 23895 ufilcmp 23970 cnpfcf 23979 alexsubALTlem2 23986 tsmsxp 24093 ivthlem2 25405 ivthlem3 25406 2sqreultlem 27410 2sqreultblem 27411 2sqreunnltlem 27413 2sqreunnltblem 27414 negsid 27999 bdayon 28225 umgrislfupgrlem 29101 uhgr2edg 29187 wlkv0 29631 usgr2pth 29746 clwlkclwwlklem2 29981 frgrregord013 30376 prsrcmpltd 35112 sat1el2xp 35401 goalrlem 35418 uhgrimedgi 47903 isubgr3stgrlem7 47984 grlimgrtri 48008 |
| Copyright terms: Public domain | W3C validator |