| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > impcomd | Structured version Visualization version GIF version | ||
| Description: Importation deduction with commuted antecedents. (Contributed by Peter Mazsa, 24-Sep-2022.) (Proof shortened by Wolf Lammen, 22-Oct-2022.) |
| Ref | Expression |
|---|---|
| impd.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| impcomd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impd.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com23 86 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sbequ2 2250 ralxfrd 5366 ralxfrd2 5370 iss 6009 dfpo2 6272 funssres 6563 fv3 6879 fmptsnd 7146 resf1extb 7913 frrlem10 8277 wfr3g 8301 nnmord 8599 cfcoflem 10232 nqereu 10889 ltletr 11273 fzind 12639 eqreznegel 12900 xrltletr 13124 xnn0xaddcl 13202 elfzodifsumelfzo 13699 hash2prde 14442 hash3tpde 14465 fundmge2nop0 14474 wrd2ind 14695 swrdccatin1 14697 rlimuni 15523 rlimno1 15627 ndvdssub 16386 lcmfunsnlem2 16617 coprmdvds 16630 coprmdvds2 16631 gsmsymgrfixlem1 19364 lsmdisj2 19619 chfacfisf 22748 chfacfisfcpmat 22749 lmcnp 23198 1stccnp 23356 txlm 23542 fgss2 23768 fgfil 23769 ufileu 23813 rnelfm 23847 fmfnfmlem2 23849 fmfnfmlem4 23851 ufilcmp 23926 cnpfcf 23935 alexsubALTlem2 23942 tsmsxp 24049 ivthlem2 25360 ivthlem3 25361 2sqreultlem 27365 2sqreultblem 27366 2sqreunnltlem 27368 2sqreunnltblem 27369 negsid 27954 bdayon 28180 umgrislfupgrlem 29056 uhgr2edg 29142 wlkv0 29586 usgr2pth 29701 clwlkclwwlklem2 29936 frgrregord013 30331 prsrcmpltd 35078 sat1el2xp 35373 goalrlem 35390 uhgrimedgi 47894 isubgr3stgrlem7 47975 grlimgrtri 47999 pgnbgreunbgrlem2 48111 pgnbgreunbgrlem5 48117 |
| Copyright terms: Public domain | W3C validator |