![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impcomd | Structured version Visualization version GIF version |
Description: Importation deduction with commuted antecedents. (Contributed by Peter Mazsa, 24-Sep-2022.) (Proof shortened by Wolf Lammen, 22-Oct-2022.) |
Ref | Expression |
---|---|
impd.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
impcomd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impd.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com23 86 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: sbequ2 2246 ralxfrd 5413 ralxfrd2 5417 iss 6054 dfpo2 6317 funssres 6611 fv3 6924 fmptsnd 7188 frrlem10 8318 wfr3g 8345 nnmord 8668 cfcoflem 10309 nqereu 10966 ltletr 11350 fzind 12713 eqreznegel 12973 xrltletr 13195 xnn0xaddcl 13273 elfzodifsumelfzo 13766 hash2prde 14505 hash3tpde 14528 fundmge2nop0 14537 wrd2ind 14757 swrdccatin1 14759 rlimuni 15582 rlimno1 15686 ndvdssub 16442 lcmfunsnlem2 16673 coprmdvds 16686 coprmdvds2 16687 gsmsymgrfixlem1 19459 lsmdisj2 19714 chfacfisf 22875 chfacfisfcpmat 22876 lmcnp 23327 1stccnp 23485 txlm 23671 fgss2 23897 fgfil 23898 ufileu 23942 rnelfm 23976 fmfnfmlem2 23978 fmfnfmlem4 23980 ufilcmp 24055 cnpfcf 24064 alexsubALTlem2 24071 tsmsxp 24178 ivthlem2 25500 ivthlem3 25501 2sqreultlem 27505 2sqreultblem 27506 2sqreunnltlem 27508 2sqreunnltblem 27509 negsid 28087 umgrislfupgrlem 29153 uhgr2edg 29239 wlkv0 29683 usgr2pth 29796 clwlkclwwlklem2 30028 frgrregord013 30423 prsrcmpltd 35073 sat1el2xp 35363 goalrlem 35380 isubgr3stgrlem7 47874 grlimgrtri 47898 |
Copyright terms: Public domain | W3C validator |