| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > impcomd | Structured version Visualization version GIF version | ||
| Description: Importation deduction with commuted antecedents. (Contributed by Peter Mazsa, 24-Sep-2022.) (Proof shortened by Wolf Lammen, 22-Oct-2022.) |
| Ref | Expression |
|---|---|
| impd.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| impcomd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impd.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com23 86 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sbequ2 2250 ralxfrd 5363 ralxfrd2 5367 iss 6006 dfpo2 6269 funssres 6560 fv3 6876 fmptsnd 7143 resf1extb 7910 frrlem10 8274 wfr3g 8298 nnmord 8596 cfcoflem 10225 nqereu 10882 ltletr 11266 fzind 12632 eqreznegel 12893 xrltletr 13117 xnn0xaddcl 13195 elfzodifsumelfzo 13692 hash2prde 14435 hash3tpde 14458 fundmge2nop0 14467 wrd2ind 14688 swrdccatin1 14690 rlimuni 15516 rlimno1 15620 ndvdssub 16379 lcmfunsnlem2 16610 coprmdvds 16623 coprmdvds2 16624 gsmsymgrfixlem1 19357 lsmdisj2 19612 chfacfisf 22741 chfacfisfcpmat 22742 lmcnp 23191 1stccnp 23349 txlm 23535 fgss2 23761 fgfil 23762 ufileu 23806 rnelfm 23840 fmfnfmlem2 23842 fmfnfmlem4 23844 ufilcmp 23919 cnpfcf 23928 alexsubALTlem2 23935 tsmsxp 24042 ivthlem2 25353 ivthlem3 25354 2sqreultlem 27358 2sqreultblem 27359 2sqreunnltlem 27361 2sqreunnltblem 27362 negsid 27947 bdayon 28173 umgrislfupgrlem 29049 uhgr2edg 29135 wlkv0 29579 usgr2pth 29694 clwlkclwwlklem2 29929 frgrregord013 30324 prsrcmpltd 35071 sat1el2xp 35366 goalrlem 35383 uhgrimedgi 47890 isubgr3stgrlem7 47971 grlimgrtri 47995 pgnbgreunbgrlem2 48107 pgnbgreunbgrlem5 48113 |
| Copyright terms: Public domain | W3C validator |