![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impcomd | Structured version Visualization version GIF version |
Description: Importation deduction with commuted antecedents. (Contributed by Peter Mazsa, 24-Sep-2022.) (Proof shortened by Wolf Lammen, 22-Oct-2022.) |
Ref | Expression |
---|---|
impd.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
impcomd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impd.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com23 86 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: sbequ2 2250 ralxfrd 5426 ralxfrd2 5430 iss 6064 dfpo2 6327 funssres 6622 fv3 6938 fmptsnd 7203 frrlem10 8336 wfr3g 8363 nnmord 8688 cfcoflem 10341 nqereu 10998 ltletr 11382 fzind 12741 eqreznegel 12999 xrltletr 13219 xnn0xaddcl 13297 elfzodifsumelfzo 13782 hash2prde 14519 hash3tpde 14542 fundmge2nop0 14551 wrd2ind 14771 swrdccatin1 14773 rlimuni 15596 rlimno1 15702 ndvdssub 16457 lcmfunsnlem2 16687 coprmdvds 16700 coprmdvds2 16701 gsmsymgrfixlem1 19469 lsmdisj2 19724 chfacfisf 22881 chfacfisfcpmat 22882 lmcnp 23333 1stccnp 23491 txlm 23677 fgss2 23903 fgfil 23904 ufileu 23948 rnelfm 23982 fmfnfmlem2 23984 fmfnfmlem4 23986 ufilcmp 24061 cnpfcf 24070 alexsubALTlem2 24077 tsmsxp 24184 ivthlem2 25506 ivthlem3 25507 2sqreultlem 27509 2sqreultblem 27510 2sqreunnltlem 27512 2sqreunnltblem 27513 negsid 28091 umgrislfupgrlem 29157 uhgr2edg 29243 wlkv0 29687 usgr2pth 29800 clwlkclwwlklem2 30032 frgrregord013 30427 prsrcmpltd 35057 sat1el2xp 35347 goalrlem 35364 grlimgrtri 47820 |
Copyright terms: Public domain | W3C validator |