![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impcomd | Structured version Visualization version GIF version |
Description: Importation deduction with commuted antecedents. (Contributed by Peter Mazsa, 24-Sep-2022.) (Proof shortened by Wolf Lammen, 22-Oct-2022.) |
Ref | Expression |
---|---|
impd.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
impcomd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impd.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com23 86 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
3 | 2 | impd 411 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: sbequ2 2241 ralxfrd 5406 ralxfrd2 5410 iss 6035 dfpo2 6295 funssres 6592 fv3 6909 fmptsnd 7169 frrlem10 8282 wfr3g 8309 nnmord 8634 cfcoflem 10269 nqereu 10926 ltletr 11310 fzind 12664 eqreznegel 12922 xrltletr 13140 xnn0xaddcl 13218 elfzodifsumelfzo 13702 hash2prde 14435 fundmge2nop0 14457 wrd2ind 14677 swrdccatin1 14679 rlimuni 15498 rlimno1 15604 ndvdssub 16356 lcmfunsnlem2 16581 coprmdvds 16594 coprmdvds2 16595 gsmsymgrfixlem1 19336 lsmdisj2 19591 chfacfisf 22576 chfacfisfcpmat 22577 lmcnp 23028 1stccnp 23186 txlm 23372 fgss2 23598 fgfil 23599 ufileu 23643 rnelfm 23677 fmfnfmlem2 23679 fmfnfmlem4 23681 ufilcmp 23756 cnpfcf 23765 alexsubALTlem2 23772 tsmsxp 23879 ivthlem2 25193 ivthlem3 25194 2sqreultlem 27174 2sqreultblem 27175 2sqreunnltlem 27177 2sqreunnltblem 27178 negsid 27742 umgrislfupgrlem 28637 uhgr2edg 28720 wlkv0 29163 usgr2pth 29276 clwlkclwwlklem2 29508 frgrregord013 29903 prsrcmpltd 34372 sat1el2xp 34656 goalrlem 34673 |
Copyright terms: Public domain | W3C validator |