![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impcomd | Structured version Visualization version GIF version |
Description: Importation deduction with commuted antecedents. (Contributed by Peter Mazsa, 24-Sep-2022.) (Proof shortened by Wolf Lammen, 22-Oct-2022.) |
Ref | Expression |
---|---|
impd.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
impcomd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impd.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com23 86 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
3 | 2 | impd 412 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: sbequ2 2242 ralxfrd 5407 ralxfrd2 5411 iss 6036 dfpo2 6296 funssres 6593 fv3 6910 fmptsnd 7167 frrlem10 8280 wfr3g 8307 nnmord 8632 cfcoflem 10267 nqereu 10924 ltletr 11306 fzind 12660 eqreznegel 12918 xrltletr 13136 xnn0xaddcl 13214 elfzodifsumelfzo 13698 hash2prde 14431 fundmge2nop0 14453 wrd2ind 14673 swrdccatin1 14675 rlimuni 15494 rlimno1 15600 ndvdssub 16352 lcmfunsnlem2 16577 coprmdvds 16590 coprmdvds2 16591 gsmsymgrfixlem1 19295 lsmdisj2 19550 chfacfisf 22356 chfacfisfcpmat 22357 lmcnp 22808 1stccnp 22966 txlm 23152 fgss2 23378 fgfil 23379 ufileu 23423 rnelfm 23457 fmfnfmlem2 23459 fmfnfmlem4 23461 ufilcmp 23536 cnpfcf 23545 alexsubALTlem2 23552 tsmsxp 23659 ivthlem2 24969 ivthlem3 24970 2sqreultlem 26950 2sqreultblem 26951 2sqreunnltlem 26953 2sqreunnltblem 26954 negsid 27515 umgrislfupgrlem 28382 uhgr2edg 28465 wlkv0 28908 usgr2pth 29021 clwlkclwwlklem2 29253 frgrregord013 29648 prsrcmpltd 34086 sat1el2xp 34370 goalrlem 34387 |
Copyright terms: Public domain | W3C validator |