Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > impcomd | Structured version Visualization version GIF version |
Description: Importation deduction with commuted antecedents. (Contributed by Peter Mazsa, 24-Sep-2022.) (Proof shortened by Wolf Lammen, 22-Oct-2022.) |
Ref | Expression |
---|---|
impd.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
impcomd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impd.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com23 86 | . 2 ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) |
3 | 2 | impd 411 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: sbequ2 2241 sbequ2OLD 2242 ralxfrd 5331 ralxfrd2 5335 iss 5943 dfpo2 6199 funssres 6478 fv3 6792 fmptsnd 7041 frrlem10 8111 wfr3g 8138 nnmord 8463 cfcoflem 10028 nqereu 10685 ltletr 11067 fzind 12418 eqreznegel 12674 xrltletr 12891 xnn0xaddcl 12969 elfzodifsumelfzo 13453 hash2prde 14184 fundmge2nop0 14206 wrd2ind 14436 swrdccatin1 14438 rlimuni 15259 rlimno1 15365 ndvdssub 16118 lcmfunsnlem2 16345 coprmdvds 16358 coprmdvds2 16359 gsmsymgrfixlem1 19035 lsmdisj2 19288 chfacfisf 22003 chfacfisfcpmat 22004 lmcnp 22455 1stccnp 22613 txlm 22799 fgss2 23025 fgfil 23026 ufileu 23070 rnelfm 23104 fmfnfmlem2 23106 fmfnfmlem4 23108 ufilcmp 23183 cnpfcf 23192 alexsubALTlem2 23199 tsmsxp 23306 ivthlem2 24616 ivthlem3 24617 2sqreultlem 26595 2sqreultblem 26596 2sqreunnltlem 26598 2sqreunnltblem 26599 umgrislfupgrlem 27492 uhgr2edg 27575 wlkv0 28018 usgr2pth 28132 clwlkclwwlklem2 28364 frgrregord013 28759 prsrcmpltd 33055 sat1el2xp 33341 goalrlem 33358 |
Copyright terms: Public domain | W3C validator |