Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1resrcmplf1d Structured version   Visualization version   GIF version

Theorem f1resrcmplf1d 32381
Description: If a function's restriction to a subclass of its domain and its restriction to the relative complement of that subclass are both one-to-one, and if the ranges of those two restrictions are disjoint, then the function is itself one-to-one. (Contributed by BTernaryTau, 28-Sep-2023.)
Hypotheses
Ref Expression
f1resrcmplf1d.1 (𝜑𝐶𝐴)
f1resrcmplf1d.2 (𝜑𝐹:𝐴𝐵)
f1resrcmplf1d.3 (𝜑 → (𝐹𝐶):𝐶1-1𝐵)
f1resrcmplf1d.4 (𝜑 → (𝐹 ↾ (𝐴𝐶)):(𝐴𝐶)–1-1𝐵)
f1resrcmplf1d.5 (𝜑 → ((𝐹𝐶) ∩ (𝐹 “ (𝐴𝐶))) = ∅)
Assertion
Ref Expression
f1resrcmplf1d (𝜑𝐹:𝐴1-1𝐵)

Proof of Theorem f1resrcmplf1d
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1resrcmplf1d.2 . 2 (𝜑𝐹:𝐴𝐵)
2 f1resrcmplf1d.3 . . . . . 6 (𝜑 → (𝐹𝐶):𝐶1-1𝐵)
3 f1resveqaeq 32379 . . . . . 6 (((𝐹𝐶):𝐶1-1𝐵 ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
42, 3sylan 582 . . . . 5 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
54ex 415 . . . 4 (𝜑 → ((𝑥𝐶𝑦𝐶) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6 f1resrcmplf1d.1 . . . . 5 (𝜑𝐶𝐴)
7 difssd 4102 . . . . 5 (𝜑 → (𝐴𝐶) ⊆ 𝐴)
8 f1resrcmplf1d.5 . . . . 5 (𝜑 → ((𝐹𝐶) ∩ (𝐹 “ (𝐴𝐶))) = ∅)
96, 7, 1, 8f1resrcmplf1dlem 32380 . . . 4 (𝜑 → ((𝑥𝐶𝑦 ∈ (𝐴𝐶)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
10 incom 4171 . . . . . 6 ((𝐹𝐶) ∩ (𝐹 “ (𝐴𝐶))) = ((𝐹 “ (𝐴𝐶)) ∩ (𝐹𝐶))
1110, 8syl5eqr 2869 . . . . 5 (𝜑 → ((𝐹 “ (𝐴𝐶)) ∩ (𝐹𝐶)) = ∅)
127, 6, 1, 11f1resrcmplf1dlem 32380 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴𝐶) ∧ 𝑦𝐶) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
13 f1resrcmplf1d.4 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐴𝐶)):(𝐴𝐶)–1-1𝐵)
14 f1resveqaeq 32379 . . . . . 6 (((𝐹 ↾ (𝐴𝐶)):(𝐴𝐶)–1-1𝐵 ∧ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐴𝐶))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
1513, 14sylan 582 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐴𝐶))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
1615ex 415 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐴𝐶)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
175, 9, 12, 16prsrcmpltd 32368 . . 3 (𝜑 → ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
1817ralrimivv 3189 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
19 dff13 7006 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
201, 18, 19sylanbrc 585 1 (𝜑𝐹:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wral 3137  cdif 3926  cin 3928  wss 3929  c0 4284  cres 5550  cima 5551  wf 6344  1-1wf1 6345  cfv 6348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-sbc 3769  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fv 6356
This theorem is referenced by:  f1resfz0f1d  32382
  Copyright terms: Public domain W3C validator