| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1resrcmplf1d | Structured version Visualization version GIF version | ||
| Description: If a function's restriction to a subclass of its domain and its restriction to the relative complement of that subclass are both one-to-one, and if the ranges of those two restrictions are disjoint, then the function is itself one-to-one. (Contributed by BTernaryTau, 28-Sep-2023.) |
| Ref | Expression |
|---|---|
| f1resrcmplf1d.1 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| f1resrcmplf1d.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| f1resrcmplf1d.3 | ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) |
| f1resrcmplf1d.4 | ⊢ (𝜑 → (𝐹 ↾ (𝐴 ∖ 𝐶)):(𝐴 ∖ 𝐶)–1-1→𝐵) |
| f1resrcmplf1d.5 | ⊢ (𝜑 → ((𝐹 “ 𝐶) ∩ (𝐹 “ (𝐴 ∖ 𝐶))) = ∅) |
| Ref | Expression |
|---|---|
| f1resrcmplf1d | ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1resrcmplf1d.2 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | f1resrcmplf1d.3 | . . . . . 6 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) | |
| 3 | f1resveqaeq 35169 | . . . . . 6 ⊢ (((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | |
| 4 | 2, 3 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 5 | 4 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 6 | f1resrcmplf1d.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 7 | difssd 4086 | . . . . 5 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ 𝐴) | |
| 8 | f1resrcmplf1d.5 | . . . . 5 ⊢ (𝜑 → ((𝐹 “ 𝐶) ∩ (𝐹 “ (𝐴 ∖ 𝐶))) = ∅) | |
| 9 | 6, 7, 1, 8 | f1resrcmplf1dlem 35170 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ (𝐴 ∖ 𝐶)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 10 | incom 4158 | . . . . . 6 ⊢ ((𝐹 “ 𝐶) ∩ (𝐹 “ (𝐴 ∖ 𝐶))) = ((𝐹 “ (𝐴 ∖ 𝐶)) ∩ (𝐹 “ 𝐶)) | |
| 11 | 10, 8 | eqtr3id 2782 | . . . . 5 ⊢ (𝜑 → ((𝐹 “ (𝐴 ∖ 𝐶)) ∩ (𝐹 “ 𝐶)) = ∅) |
| 12 | 7, 6, 1, 11 | f1resrcmplf1dlem 35170 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∖ 𝐶) ∧ 𝑦 ∈ 𝐶) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 13 | f1resrcmplf1d.4 | . . . . . 6 ⊢ (𝜑 → (𝐹 ↾ (𝐴 ∖ 𝐶)):(𝐴 ∖ 𝐶)–1-1→𝐵) | |
| 14 | f1resveqaeq 35169 | . . . . . 6 ⊢ (((𝐹 ↾ (𝐴 ∖ 𝐶)):(𝐴 ∖ 𝐶)–1-1→𝐵 ∧ (𝑥 ∈ (𝐴 ∖ 𝐶) ∧ 𝑦 ∈ (𝐴 ∖ 𝐶))) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | |
| 15 | 13, 14 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝐴 ∖ 𝐶) ∧ 𝑦 ∈ (𝐴 ∖ 𝐶))) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 16 | 15 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∖ 𝐶) ∧ 𝑦 ∈ (𝐴 ∖ 𝐶)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 17 | 5, 9, 12, 16 | prsrcmpltd 35165 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 18 | 17 | ralrimivv 3174 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 19 | dff13 7197 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | |
| 20 | 1, 18, 19 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∖ cdif 3895 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 ↾ cres 5623 “ cima 5624 ⟶wf 6485 –1-1→wf1 6486 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fv 6497 |
| This theorem is referenced by: f1resfz0f1d 35230 |
| Copyright terms: Public domain | W3C validator |