Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1resrcmplf1d | Structured version Visualization version GIF version |
Description: If a function's restriction to a subclass of its domain and its restriction to the relative complement of that subclass are both one-to-one, and if the ranges of those two restrictions are disjoint, then the function is itself one-to-one. (Contributed by BTernaryTau, 28-Sep-2023.) |
Ref | Expression |
---|---|
f1resrcmplf1d.1 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
f1resrcmplf1d.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
f1resrcmplf1d.3 | ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) |
f1resrcmplf1d.4 | ⊢ (𝜑 → (𝐹 ↾ (𝐴 ∖ 𝐶)):(𝐴 ∖ 𝐶)–1-1→𝐵) |
f1resrcmplf1d.5 | ⊢ (𝜑 → ((𝐹 “ 𝐶) ∩ (𝐹 “ (𝐴 ∖ 𝐶))) = ∅) |
Ref | Expression |
---|---|
f1resrcmplf1d | ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1resrcmplf1d.2 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | f1resrcmplf1d.3 | . . . . . 6 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) | |
3 | f1resveqaeq 32957 | . . . . . 6 ⊢ (((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | |
4 | 2, 3 | sylan 579 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
5 | 4 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
6 | f1resrcmplf1d.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
7 | difssd 4063 | . . . . 5 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ 𝐴) | |
8 | f1resrcmplf1d.5 | . . . . 5 ⊢ (𝜑 → ((𝐹 “ 𝐶) ∩ (𝐹 “ (𝐴 ∖ 𝐶))) = ∅) | |
9 | 6, 7, 1, 8 | f1resrcmplf1dlem 32958 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ (𝐴 ∖ 𝐶)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
10 | incom 4131 | . . . . . 6 ⊢ ((𝐹 “ 𝐶) ∩ (𝐹 “ (𝐴 ∖ 𝐶))) = ((𝐹 “ (𝐴 ∖ 𝐶)) ∩ (𝐹 “ 𝐶)) | |
11 | 10, 8 | eqtr3id 2793 | . . . . 5 ⊢ (𝜑 → ((𝐹 “ (𝐴 ∖ 𝐶)) ∩ (𝐹 “ 𝐶)) = ∅) |
12 | 7, 6, 1, 11 | f1resrcmplf1dlem 32958 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∖ 𝐶) ∧ 𝑦 ∈ 𝐶) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
13 | f1resrcmplf1d.4 | . . . . . 6 ⊢ (𝜑 → (𝐹 ↾ (𝐴 ∖ 𝐶)):(𝐴 ∖ 𝐶)–1-1→𝐵) | |
14 | f1resveqaeq 32957 | . . . . . 6 ⊢ (((𝐹 ↾ (𝐴 ∖ 𝐶)):(𝐴 ∖ 𝐶)–1-1→𝐵 ∧ (𝑥 ∈ (𝐴 ∖ 𝐶) ∧ 𝑦 ∈ (𝐴 ∖ 𝐶))) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | |
15 | 13, 14 | sylan 579 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝐴 ∖ 𝐶) ∧ 𝑦 ∈ (𝐴 ∖ 𝐶))) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
16 | 15 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∖ 𝐶) ∧ 𝑦 ∈ (𝐴 ∖ 𝐶)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
17 | 5, 9, 12, 16 | prsrcmpltd 32955 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
18 | 17 | ralrimivv 3113 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
19 | dff13 7109 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | |
20 | 1, 18, 19 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 ↾ cres 5582 “ cima 5583 ⟶wf 6414 –1-1→wf1 6415 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fv 6426 |
This theorem is referenced by: f1resfz0f1d 32972 |
Copyright terms: Public domain | W3C validator |