Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1resrcmplf1d Structured version   Visualization version   GIF version

Theorem f1resrcmplf1d 35065
Description: If a function's restriction to a subclass of its domain and its restriction to the relative complement of that subclass are both one-to-one, and if the ranges of those two restrictions are disjoint, then the function is itself one-to-one. (Contributed by BTernaryTau, 28-Sep-2023.)
Hypotheses
Ref Expression
f1resrcmplf1d.1 (𝜑𝐶𝐴)
f1resrcmplf1d.2 (𝜑𝐹:𝐴𝐵)
f1resrcmplf1d.3 (𝜑 → (𝐹𝐶):𝐶1-1𝐵)
f1resrcmplf1d.4 (𝜑 → (𝐹 ↾ (𝐴𝐶)):(𝐴𝐶)–1-1𝐵)
f1resrcmplf1d.5 (𝜑 → ((𝐹𝐶) ∩ (𝐹 “ (𝐴𝐶))) = ∅)
Assertion
Ref Expression
f1resrcmplf1d (𝜑𝐹:𝐴1-1𝐵)

Proof of Theorem f1resrcmplf1d
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1resrcmplf1d.2 . 2 (𝜑𝐹:𝐴𝐵)
2 f1resrcmplf1d.3 . . . . . 6 (𝜑 → (𝐹𝐶):𝐶1-1𝐵)
3 f1resveqaeq 35063 . . . . . 6 (((𝐹𝐶):𝐶1-1𝐵 ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
42, 3sylan 579 . . . . 5 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
54ex 412 . . . 4 (𝜑 → ((𝑥𝐶𝑦𝐶) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6 f1resrcmplf1d.1 . . . . 5 (𝜑𝐶𝐴)
7 difssd 4160 . . . . 5 (𝜑 → (𝐴𝐶) ⊆ 𝐴)
8 f1resrcmplf1d.5 . . . . 5 (𝜑 → ((𝐹𝐶) ∩ (𝐹 “ (𝐴𝐶))) = ∅)
96, 7, 1, 8f1resrcmplf1dlem 35064 . . . 4 (𝜑 → ((𝑥𝐶𝑦 ∈ (𝐴𝐶)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
10 incom 4230 . . . . . 6 ((𝐹𝐶) ∩ (𝐹 “ (𝐴𝐶))) = ((𝐹 “ (𝐴𝐶)) ∩ (𝐹𝐶))
1110, 8eqtr3id 2794 . . . . 5 (𝜑 → ((𝐹 “ (𝐴𝐶)) ∩ (𝐹𝐶)) = ∅)
127, 6, 1, 11f1resrcmplf1dlem 35064 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴𝐶) ∧ 𝑦𝐶) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
13 f1resrcmplf1d.4 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐴𝐶)):(𝐴𝐶)–1-1𝐵)
14 f1resveqaeq 35063 . . . . . 6 (((𝐹 ↾ (𝐴𝐶)):(𝐴𝐶)–1-1𝐵 ∧ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐴𝐶))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
1513, 14sylan 579 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐴𝐶))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
1615ex 412 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐴𝐶)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
175, 9, 12, 16prsrcmpltd 35059 . . 3 (𝜑 → ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
1817ralrimivv 3206 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
19 dff13 7294 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
201, 18, 19sylanbrc 582 1 (𝜑𝐹:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  cdif 3973  cin 3975  wss 3976  c0 4352  cres 5702  cima 5703  wf 6571  1-1wf1 6572  cfv 6575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fv 6583
This theorem is referenced by:  f1resfz0f1d  35083
  Copyright terms: Public domain W3C validator