Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1resrcmplf1d | Structured version Visualization version GIF version |
Description: If a function's restriction to a subclass of its domain and its restriction to the relative complement of that subclass are both one-to-one, and if the ranges of those two restrictions are disjoint, then the function is itself one-to-one. (Contributed by BTernaryTau, 28-Sep-2023.) |
Ref | Expression |
---|---|
f1resrcmplf1d.1 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
f1resrcmplf1d.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
f1resrcmplf1d.3 | ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) |
f1resrcmplf1d.4 | ⊢ (𝜑 → (𝐹 ↾ (𝐴 ∖ 𝐶)):(𝐴 ∖ 𝐶)–1-1→𝐵) |
f1resrcmplf1d.5 | ⊢ (𝜑 → ((𝐹 “ 𝐶) ∩ (𝐹 “ (𝐴 ∖ 𝐶))) = ∅) |
Ref | Expression |
---|---|
f1resrcmplf1d | ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1resrcmplf1d.2 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | f1resrcmplf1d.3 | . . . . . 6 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) | |
3 | f1resveqaeq 33057 | . . . . . 6 ⊢ (((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | |
4 | 2, 3 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
5 | 4 | ex 413 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
6 | f1resrcmplf1d.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
7 | difssd 4067 | . . . . 5 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ 𝐴) | |
8 | f1resrcmplf1d.5 | . . . . 5 ⊢ (𝜑 → ((𝐹 “ 𝐶) ∩ (𝐹 “ (𝐴 ∖ 𝐶))) = ∅) | |
9 | 6, 7, 1, 8 | f1resrcmplf1dlem 33058 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ (𝐴 ∖ 𝐶)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
10 | incom 4135 | . . . . . 6 ⊢ ((𝐹 “ 𝐶) ∩ (𝐹 “ (𝐴 ∖ 𝐶))) = ((𝐹 “ (𝐴 ∖ 𝐶)) ∩ (𝐹 “ 𝐶)) | |
11 | 10, 8 | eqtr3id 2792 | . . . . 5 ⊢ (𝜑 → ((𝐹 “ (𝐴 ∖ 𝐶)) ∩ (𝐹 “ 𝐶)) = ∅) |
12 | 7, 6, 1, 11 | f1resrcmplf1dlem 33058 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∖ 𝐶) ∧ 𝑦 ∈ 𝐶) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
13 | f1resrcmplf1d.4 | . . . . . 6 ⊢ (𝜑 → (𝐹 ↾ (𝐴 ∖ 𝐶)):(𝐴 ∖ 𝐶)–1-1→𝐵) | |
14 | f1resveqaeq 33057 | . . . . . 6 ⊢ (((𝐹 ↾ (𝐴 ∖ 𝐶)):(𝐴 ∖ 𝐶)–1-1→𝐵 ∧ (𝑥 ∈ (𝐴 ∖ 𝐶) ∧ 𝑦 ∈ (𝐴 ∖ 𝐶))) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | |
15 | 13, 14 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝐴 ∖ 𝐶) ∧ 𝑦 ∈ (𝐴 ∖ 𝐶))) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
16 | 15 | ex 413 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∖ 𝐶) ∧ 𝑦 ∈ (𝐴 ∖ 𝐶)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
17 | 5, 9, 12, 16 | prsrcmpltd 33055 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
18 | 17 | ralrimivv 3122 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
19 | dff13 7128 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | |
20 | 1, 18, 19 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ↾ cres 5591 “ cima 5592 ⟶wf 6429 –1-1→wf1 6430 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fv 6441 |
This theorem is referenced by: f1resfz0f1d 33072 |
Copyright terms: Public domain | W3C validator |