| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1resrcmplf1d | Structured version Visualization version GIF version | ||
| Description: If a function's restriction to a subclass of its domain and its restriction to the relative complement of that subclass are both one-to-one, and if the ranges of those two restrictions are disjoint, then the function is itself one-to-one. (Contributed by BTernaryTau, 28-Sep-2023.) |
| Ref | Expression |
|---|---|
| f1resrcmplf1d.1 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| f1resrcmplf1d.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| f1resrcmplf1d.3 | ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) |
| f1resrcmplf1d.4 | ⊢ (𝜑 → (𝐹 ↾ (𝐴 ∖ 𝐶)):(𝐴 ∖ 𝐶)–1-1→𝐵) |
| f1resrcmplf1d.5 | ⊢ (𝜑 → ((𝐹 “ 𝐶) ∩ (𝐹 “ (𝐴 ∖ 𝐶))) = ∅) |
| Ref | Expression |
|---|---|
| f1resrcmplf1d | ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1resrcmplf1d.2 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | f1resrcmplf1d.3 | . . . . . 6 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) | |
| 3 | f1resveqaeq 35054 | . . . . . 6 ⊢ (((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | |
| 4 | 2, 3 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 5 | 4 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 6 | f1resrcmplf1d.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 7 | difssd 4090 | . . . . 5 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ 𝐴) | |
| 8 | f1resrcmplf1d.5 | . . . . 5 ⊢ (𝜑 → ((𝐹 “ 𝐶) ∩ (𝐹 “ (𝐴 ∖ 𝐶))) = ∅) | |
| 9 | 6, 7, 1, 8 | f1resrcmplf1dlem 35055 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ (𝐴 ∖ 𝐶)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 10 | incom 4162 | . . . . . 6 ⊢ ((𝐹 “ 𝐶) ∩ (𝐹 “ (𝐴 ∖ 𝐶))) = ((𝐹 “ (𝐴 ∖ 𝐶)) ∩ (𝐹 “ 𝐶)) | |
| 11 | 10, 8 | eqtr3id 2778 | . . . . 5 ⊢ (𝜑 → ((𝐹 “ (𝐴 ∖ 𝐶)) ∩ (𝐹 “ 𝐶)) = ∅) |
| 12 | 7, 6, 1, 11 | f1resrcmplf1dlem 35055 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∖ 𝐶) ∧ 𝑦 ∈ 𝐶) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 13 | f1resrcmplf1d.4 | . . . . . 6 ⊢ (𝜑 → (𝐹 ↾ (𝐴 ∖ 𝐶)):(𝐴 ∖ 𝐶)–1-1→𝐵) | |
| 14 | f1resveqaeq 35054 | . . . . . 6 ⊢ (((𝐹 ↾ (𝐴 ∖ 𝐶)):(𝐴 ∖ 𝐶)–1-1→𝐵 ∧ (𝑥 ∈ (𝐴 ∖ 𝐶) ∧ 𝑦 ∈ (𝐴 ∖ 𝐶))) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | |
| 15 | 13, 14 | sylan 580 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝐴 ∖ 𝐶) ∧ 𝑦 ∈ (𝐴 ∖ 𝐶))) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 16 | 15 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∖ 𝐶) ∧ 𝑦 ∈ (𝐴 ∖ 𝐶)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 17 | 5, 9, 12, 16 | prsrcmpltd 35050 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 18 | 17 | ralrimivv 3170 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 19 | dff13 7195 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | |
| 20 | 1, 18, 19 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3902 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 ↾ cres 5625 “ cima 5626 ⟶wf 6482 –1-1→wf1 6483 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fv 6494 |
| This theorem is referenced by: f1resfz0f1d 35089 |
| Copyright terms: Public domain | W3C validator |