Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1resrcmplf1d Structured version   Visualization version   GIF version

Theorem f1resrcmplf1d 35091
Description: If a function's restriction to a subclass of its domain and its restriction to the relative complement of that subclass are both one-to-one, and if the ranges of those two restrictions are disjoint, then the function is itself one-to-one. (Contributed by BTernaryTau, 28-Sep-2023.)
Hypotheses
Ref Expression
f1resrcmplf1d.1 (𝜑𝐶𝐴)
f1resrcmplf1d.2 (𝜑𝐹:𝐴𝐵)
f1resrcmplf1d.3 (𝜑 → (𝐹𝐶):𝐶1-1𝐵)
f1resrcmplf1d.4 (𝜑 → (𝐹 ↾ (𝐴𝐶)):(𝐴𝐶)–1-1𝐵)
f1resrcmplf1d.5 (𝜑 → ((𝐹𝐶) ∩ (𝐹 “ (𝐴𝐶))) = ∅)
Assertion
Ref Expression
f1resrcmplf1d (𝜑𝐹:𝐴1-1𝐵)

Proof of Theorem f1resrcmplf1d
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1resrcmplf1d.2 . 2 (𝜑𝐹:𝐴𝐵)
2 f1resrcmplf1d.3 . . . . . 6 (𝜑 → (𝐹𝐶):𝐶1-1𝐵)
3 f1resveqaeq 35089 . . . . . 6 (((𝐹𝐶):𝐶1-1𝐵 ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
42, 3sylan 580 . . . . 5 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
54ex 412 . . . 4 (𝜑 → ((𝑥𝐶𝑦𝐶) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6 f1resrcmplf1d.1 . . . . 5 (𝜑𝐶𝐴)
7 difssd 4082 . . . . 5 (𝜑 → (𝐴𝐶) ⊆ 𝐴)
8 f1resrcmplf1d.5 . . . . 5 (𝜑 → ((𝐹𝐶) ∩ (𝐹 “ (𝐴𝐶))) = ∅)
96, 7, 1, 8f1resrcmplf1dlem 35090 . . . 4 (𝜑 → ((𝑥𝐶𝑦 ∈ (𝐴𝐶)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
10 incom 4154 . . . . . 6 ((𝐹𝐶) ∩ (𝐹 “ (𝐴𝐶))) = ((𝐹 “ (𝐴𝐶)) ∩ (𝐹𝐶))
1110, 8eqtr3id 2780 . . . . 5 (𝜑 → ((𝐹 “ (𝐴𝐶)) ∩ (𝐹𝐶)) = ∅)
127, 6, 1, 11f1resrcmplf1dlem 35090 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴𝐶) ∧ 𝑦𝐶) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
13 f1resrcmplf1d.4 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐴𝐶)):(𝐴𝐶)–1-1𝐵)
14 f1resveqaeq 35089 . . . . . 6 (((𝐹 ↾ (𝐴𝐶)):(𝐴𝐶)–1-1𝐵 ∧ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐴𝐶))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
1513, 14sylan 580 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐴𝐶))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
1615ex 412 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴𝐶) ∧ 𝑦 ∈ (𝐴𝐶)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
175, 9, 12, 16prsrcmpltd 35085 . . 3 (𝜑 → ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
1817ralrimivv 3173 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
19 dff13 7183 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
201, 18, 19sylanbrc 583 1 (𝜑𝐹:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  cdif 3894  cin 3896  wss 3897  c0 4278  cres 5613  cima 5614  wf 6472  1-1wf1 6473  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fv 6484
This theorem is referenced by:  f1resfz0f1d  35150
  Copyright terms: Public domain W3C validator