MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prsspw Structured version   Visualization version   GIF version

Theorem prsspw 4848
Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by OpenAI, 25-Mar-2020.)
Hypotheses
Ref Expression
prsspw.1 𝐴 ∈ V
prsspw.2 𝐵 ∈ V
Assertion
Ref Expression
prsspw ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴𝐶𝐵𝐶))

Proof of Theorem prsspw
StepHypRef Expression
1 prsspw.1 . 2 𝐴 ∈ V
2 prsspw.2 . 2 𝐵 ∈ V
3 prsspwg 4828 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
41, 2, 3mp2an 690 1 ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴𝐶𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  wcel 2098  Vcvv 3461  wss 3944  𝒫 cpw 4604  {cpr 4632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3463  df-un 3949  df-ss 3961  df-pw 4606  df-sn 4631  df-pr 4633
This theorem is referenced by:  altxpsspw  35704
  Copyright terms: Public domain W3C validator