Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prsspw | Structured version Visualization version GIF version |
Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
Ref | Expression |
---|---|
prsspw.1 | ⊢ 𝐴 ∈ V |
prsspw.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
prsspw | ⊢ ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prsspw.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | prsspw.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | prsspwg 4758 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶))) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 Vcvv 3431 ⊆ wss 3888 𝒫 cpw 4535 {cpr 4565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3433 df-un 3893 df-in 3895 df-ss 3905 df-pw 4537 df-sn 4564 df-pr 4566 |
This theorem is referenced by: altxpsspw 34266 |
Copyright terms: Public domain | W3C validator |