Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prsspw | Structured version Visualization version GIF version |
Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
Ref | Expression |
---|---|
prsspw.1 | ⊢ 𝐴 ∈ V |
prsspw.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
prsspw | ⊢ ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prsspw.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | prsspw.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | prsspwg 4753 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶))) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-pw 4532 df-sn 4559 df-pr 4561 |
This theorem is referenced by: altxpsspw 34206 |
Copyright terms: Public domain | W3C validator |