Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altxpsspw Structured version   Visualization version   GIF version

Theorem altxpsspw 33438
Description: An inclusion rule for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.)
Assertion
Ref Expression
altxpsspw (𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵)

Proof of Theorem altxpsspw
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elaltxp 33436 . . 3 (𝑧 ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = ⟪𝑥, 𝑦⟫)
2 df-altop 33419 . . . . . 6 𝑥, 𝑦⟫ = {{𝑥}, {𝑥, {𝑦}}}
3 snssi 4740 . . . . . . . . 9 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
4 ssun3 4149 . . . . . . . . 9 ({𝑥} ⊆ 𝐴 → {𝑥} ⊆ (𝐴 ∪ 𝒫 𝐵))
53, 4syl 17 . . . . . . . 8 (𝑥𝐴 → {𝑥} ⊆ (𝐴 ∪ 𝒫 𝐵))
65adantr 483 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → {𝑥} ⊆ (𝐴 ∪ 𝒫 𝐵))
7 elun1 4151 . . . . . . . . 9 (𝑥𝐴𝑥 ∈ (𝐴 ∪ 𝒫 𝐵))
8 snssi 4740 . . . . . . . . . 10 (𝑦𝐵 → {𝑦} ⊆ 𝐵)
9 snex 5331 . . . . . . . . . . . 12 {𝑦} ∈ V
109elpw 4542 . . . . . . . . . . 11 ({𝑦} ∈ 𝒫 𝐵 ↔ {𝑦} ⊆ 𝐵)
11 elun2 4152 . . . . . . . . . . 11 ({𝑦} ∈ 𝒫 𝐵 → {𝑦} ∈ (𝐴 ∪ 𝒫 𝐵))
1210, 11sylbir 237 . . . . . . . . . 10 ({𝑦} ⊆ 𝐵 → {𝑦} ∈ (𝐴 ∪ 𝒫 𝐵))
138, 12syl 17 . . . . . . . . 9 (𝑦𝐵 → {𝑦} ∈ (𝐴 ∪ 𝒫 𝐵))
147, 13anim12i 614 . . . . . . . 8 ((𝑥𝐴𝑦𝐵) → (𝑥 ∈ (𝐴 ∪ 𝒫 𝐵) ∧ {𝑦} ∈ (𝐴 ∪ 𝒫 𝐵)))
15 vex 3497 . . . . . . . . 9 𝑥 ∈ V
1615, 9prss 4752 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∪ 𝒫 𝐵) ∧ {𝑦} ∈ (𝐴 ∪ 𝒫 𝐵)) ↔ {𝑥, {𝑦}} ⊆ (𝐴 ∪ 𝒫 𝐵))
1714, 16sylib 220 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → {𝑥, {𝑦}} ⊆ (𝐴 ∪ 𝒫 𝐵))
18 prex 5332 . . . . . . . . 9 {{𝑥}, {𝑥, {𝑦}}} ∈ V
1918elpw 4542 . . . . . . . 8 ({{𝑥}, {𝑥, {𝑦}}} ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ↔ {{𝑥}, {𝑥, {𝑦}}} ⊆ 𝒫 (𝐴 ∪ 𝒫 𝐵))
20 snex 5331 . . . . . . . . 9 {𝑥} ∈ V
21 prex 5332 . . . . . . . . 9 {𝑥, {𝑦}} ∈ V
2220, 21prsspw 4775 . . . . . . . 8 ({{𝑥}, {𝑥, {𝑦}}} ⊆ 𝒫 (𝐴 ∪ 𝒫 𝐵) ↔ ({𝑥} ⊆ (𝐴 ∪ 𝒫 𝐵) ∧ {𝑥, {𝑦}} ⊆ (𝐴 ∪ 𝒫 𝐵)))
2319, 22bitri 277 . . . . . . 7 ({{𝑥}, {𝑥, {𝑦}}} ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ↔ ({𝑥} ⊆ (𝐴 ∪ 𝒫 𝐵) ∧ {𝑥, {𝑦}} ⊆ (𝐴 ∪ 𝒫 𝐵)))
246, 17, 23sylanbrc 585 . . . . . 6 ((𝑥𝐴𝑦𝐵) → {{𝑥}, {𝑥, {𝑦}}} ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵))
252, 24eqeltrid 2917 . . . . 5 ((𝑥𝐴𝑦𝐵) → ⟪𝑥, 𝑦⟫ ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵))
26 eleq1a 2908 . . . . 5 (⟪𝑥, 𝑦⟫ ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) → (𝑧 = ⟪𝑥, 𝑦⟫ → 𝑧 ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵)))
2725, 26syl 17 . . . 4 ((𝑥𝐴𝑦𝐵) → (𝑧 = ⟪𝑥, 𝑦⟫ → 𝑧 ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵)))
2827rexlimivv 3292 . . 3 (∃𝑥𝐴𝑦𝐵 𝑧 = ⟪𝑥, 𝑦⟫ → 𝑧 ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵))
291, 28sylbi 219 . 2 (𝑧 ∈ (𝐴 ×× 𝐵) → 𝑧 ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵))
3029ssriv 3970 1 (𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wrex 3139  cun 3933  wss 3935  𝒫 cpw 4538  {csn 4566  {cpr 4568  caltop 33417   ×× caltxp 33418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-pw 4540  df-sn 4567  df-pr 4569  df-altop 33419  df-altxp 33420
This theorem is referenced by:  altxpexg  33439
  Copyright terms: Public domain W3C validator