Step | Hyp | Ref
| Expression |
1 | | elaltxp 34277 |
. . 3
⊢ (𝑧 ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟪𝑥, 𝑦⟫) |
2 | | df-altop 34260 |
. . . . . 6
⊢
⟪𝑥, 𝑦⟫ = {{𝑥}, {𝑥, {𝑦}}} |
3 | | snssi 4741 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ 𝐴) |
4 | | ssun3 4108 |
. . . . . . . . 9
⊢ ({𝑥} ⊆ 𝐴 → {𝑥} ⊆ (𝐴 ∪ 𝒫 𝐵)) |
5 | 3, 4 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ (𝐴 ∪ 𝒫 𝐵)) |
6 | 5 | adantr 481 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → {𝑥} ⊆ (𝐴 ∪ 𝒫 𝐵)) |
7 | | elun1 4110 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐴 ∪ 𝒫 𝐵)) |
8 | | snssi 4741 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐵 → {𝑦} ⊆ 𝐵) |
9 | | snex 5354 |
. . . . . . . . . . . 12
⊢ {𝑦} ∈ V |
10 | 9 | elpw 4537 |
. . . . . . . . . . 11
⊢ ({𝑦} ∈ 𝒫 𝐵 ↔ {𝑦} ⊆ 𝐵) |
11 | | elun2 4111 |
. . . . . . . . . . 11
⊢ ({𝑦} ∈ 𝒫 𝐵 → {𝑦} ∈ (𝐴 ∪ 𝒫 𝐵)) |
12 | 10, 11 | sylbir 234 |
. . . . . . . . . 10
⊢ ({𝑦} ⊆ 𝐵 → {𝑦} ∈ (𝐴 ∪ 𝒫 𝐵)) |
13 | 8, 12 | syl 17 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 → {𝑦} ∈ (𝐴 ∪ 𝒫 𝐵)) |
14 | 7, 13 | anim12i 613 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ (𝐴 ∪ 𝒫 𝐵) ∧ {𝑦} ∈ (𝐴 ∪ 𝒫 𝐵))) |
15 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
16 | 15, 9 | prss 4753 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐴 ∪ 𝒫 𝐵) ∧ {𝑦} ∈ (𝐴 ∪ 𝒫 𝐵)) ↔ {𝑥, {𝑦}} ⊆ (𝐴 ∪ 𝒫 𝐵)) |
17 | 14, 16 | sylib 217 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → {𝑥, {𝑦}} ⊆ (𝐴 ∪ 𝒫 𝐵)) |
18 | | prex 5355 |
. . . . . . . . 9
⊢ {{𝑥}, {𝑥, {𝑦}}} ∈ V |
19 | 18 | elpw 4537 |
. . . . . . . 8
⊢ ({{𝑥}, {𝑥, {𝑦}}} ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ↔ {{𝑥}, {𝑥, {𝑦}}} ⊆ 𝒫 (𝐴 ∪ 𝒫 𝐵)) |
20 | | snex 5354 |
. . . . . . . . 9
⊢ {𝑥} ∈ V |
21 | | prex 5355 |
. . . . . . . . 9
⊢ {𝑥, {𝑦}} ∈ V |
22 | 20, 21 | prsspw 4776 |
. . . . . . . 8
⊢ ({{𝑥}, {𝑥, {𝑦}}} ⊆ 𝒫 (𝐴 ∪ 𝒫 𝐵) ↔ ({𝑥} ⊆ (𝐴 ∪ 𝒫 𝐵) ∧ {𝑥, {𝑦}} ⊆ (𝐴 ∪ 𝒫 𝐵))) |
23 | 19, 22 | bitri 274 |
. . . . . . 7
⊢ ({{𝑥}, {𝑥, {𝑦}}} ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ↔ ({𝑥} ⊆ (𝐴 ∪ 𝒫 𝐵) ∧ {𝑥, {𝑦}} ⊆ (𝐴 ∪ 𝒫 𝐵))) |
24 | 6, 17, 23 | sylanbrc 583 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → {{𝑥}, {𝑥, {𝑦}}} ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵)) |
25 | 2, 24 | eqeltrid 2843 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ⟪𝑥, 𝑦⟫ ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵)) |
26 | | eleq1a 2834 |
. . . . 5
⊢
(⟪𝑥, 𝑦⟫ ∈ 𝒫
𝒫 (𝐴 ∪
𝒫 𝐵) → (𝑧 = ⟪𝑥, 𝑦⟫ → 𝑧 ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵))) |
27 | 25, 26 | syl 17 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑧 = ⟪𝑥, 𝑦⟫ → 𝑧 ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵))) |
28 | 27 | rexlimivv 3221 |
. . 3
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟪𝑥, 𝑦⟫ → 𝑧 ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵)) |
29 | 1, 28 | sylbi 216 |
. 2
⊢ (𝑧 ∈ (𝐴 ×× 𝐵) → 𝑧 ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵)) |
30 | 29 | ssriv 3925 |
1
⊢ (𝐴 ×× 𝐵) ⊆ 𝒫 𝒫
(𝐴 ∪ 𝒫 𝐵) |