| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsspw | Structured version Visualization version GIF version | ||
| Description: The singleton of a class is a subset of its power class. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| snsspw | ⊢ {𝐴} ⊆ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 4022 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 ⊆ 𝐴) | |
| 2 | velsn 4622 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 3 | velpw 4585 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 4 | 1, 2, 3 | 3imtr4i 292 | . 2 ⊢ (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝒫 𝐴) |
| 5 | 4 | ssriv 3967 | 1 ⊢ {𝐴} ⊆ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 𝒫 cpw 4580 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-pw 4582 df-sn 4607 |
| This theorem is referenced by: snexALT 5358 snwf 9828 tsksn 10779 mnusnd 44259 |
| Copyright terms: Public domain | W3C validator |