MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsspw Structured version   Visualization version   GIF version

Theorem snsspw 4849
Description: The singleton of a class is a subset of its power class. (Contributed by NM, 21-Jun-1993.)
Assertion
Ref Expression
snsspw {𝐴} ⊆ 𝒫 𝐴

Proof of Theorem snsspw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqimss 4054 . . 3 (𝑥 = 𝐴𝑥𝐴)
2 velsn 4647 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
3 velpw 4610 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
41, 2, 33imtr4i 292 . 2 (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝒫 𝐴)
54ssriv 3999 1 {𝐴} ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  wss 3963  𝒫 cpw 4605  {csn 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-ss 3980  df-pw 4607  df-sn 4632
This theorem is referenced by:  snexALT  5389  snwf  9847  tsksn  10798  mnusnd  44264
  Copyright terms: Public domain W3C validator