MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsspw Structured version   Visualization version   GIF version

Theorem snsspw 4825
Description: The singleton of a class is a subset of its power class. (Contributed by NM, 21-Jun-1993.)
Assertion
Ref Expression
snsspw {𝐴} ⊆ 𝒫 𝐴

Proof of Theorem snsspw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqimss 4022 . . 3 (𝑥 = 𝐴𝑥𝐴)
2 velsn 4622 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
3 velpw 4585 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
41, 2, 33imtr4i 292 . 2 (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝒫 𝐴)
54ssriv 3967 1 {𝐴} ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wss 3931  𝒫 cpw 4580  {csn 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-ss 3948  df-pw 4582  df-sn 4607
This theorem is referenced by:  snexALT  5358  snwf  9828  tsksn  10779  mnusnd  44259
  Copyright terms: Public domain W3C validator