Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snsspw | Structured version Visualization version GIF version |
Description: The singleton of a class is a subset of its power class. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
snsspw | ⊢ {𝐴} ⊆ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3988 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 ⊆ 𝐴) | |
2 | velsn 4590 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
3 | velpw 4553 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
4 | 1, 2, 3 | 3imtr4i 291 | . 2 ⊢ (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝒫 𝐴) |
5 | 4 | ssriv 3936 | 1 ⊢ {𝐴} ⊆ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 ⊆ wss 3898 𝒫 cpw 4548 {csn 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-in 3905 df-ss 3915 df-pw 4550 df-sn 4575 |
This theorem is referenced by: snexALT 5327 snwf 9667 tsksn 10618 mnusnd 42259 |
Copyright terms: Public domain | W3C validator |