![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snsspw | Structured version Visualization version GIF version |
Description: The singleton of a class is a subset of its power class. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
snsspw | ⊢ {𝐴} ⊆ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 4054 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 ⊆ 𝐴) | |
2 | velsn 4647 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
3 | velpw 4610 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
4 | 1, 2, 3 | 3imtr4i 292 | . 2 ⊢ (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝒫 𝐴) |
5 | 4 | ssriv 3999 | 1 ⊢ {𝐴} ⊆ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 𝒫 cpw 4605 {csn 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-pw 4607 df-sn 4632 |
This theorem is referenced by: snexALT 5389 snwf 9847 tsksn 10798 mnusnd 44264 |
Copyright terms: Public domain | W3C validator |