MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsspw Structured version   Visualization version   GIF version

Theorem snsspw 4845
Description: The singleton of a class is a subset of its power class. (Contributed by NM, 21-Jun-1993.)
Assertion
Ref Expression
snsspw {𝐴} ⊆ 𝒫 𝐴

Proof of Theorem snsspw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqimss 4040 . . 3 (𝑥 = 𝐴𝑥𝐴)
2 velsn 4644 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
3 velpw 4607 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
41, 2, 33imtr4i 292 . 2 (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝒫 𝐴)
54ssriv 3986 1 {𝐴} ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  wss 3948  𝒫 cpw 4602  {csn 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-in 3955  df-ss 3965  df-pw 4604  df-sn 4629
This theorem is referenced by:  snexALT  5381  snwf  9810  tsksn  10761  mnusnd  43490
  Copyright terms: Public domain W3C validator