MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsspw Structured version   Visualization version   GIF version

Theorem snsspw 4772
Description: The singleton of a class is a subset of its power class. (Contributed by NM, 21-Jun-1993.)
Assertion
Ref Expression
snsspw {𝐴} ⊆ 𝒫 𝐴

Proof of Theorem snsspw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqimss 3973 . . 3 (𝑥 = 𝐴𝑥𝐴)
2 velsn 4574 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
3 velpw 4535 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
41, 2, 33imtr4i 291 . 2 (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝒫 𝐴)
54ssriv 3921 1 {𝐴} ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  wss 3883  𝒫 cpw 4530  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532  df-sn 4559
This theorem is referenced by:  snexALT  5301  snwf  9498  tsksn  10447  mnusnd  41775
  Copyright terms: Public domain W3C validator