| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsspw | Structured version Visualization version GIF version | ||
| Description: The singleton of a class is a subset of its power class. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| snsspw | ⊢ {𝐴} ⊆ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3988 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 ⊆ 𝐴) | |
| 2 | velsn 4589 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 3 | velpw 4552 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 4 | 1, 2, 3 | 3imtr4i 292 | . 2 ⊢ (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝒫 𝐴) |
| 5 | 4 | ssriv 3933 | 1 ⊢ {𝐴} ⊆ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 𝒫 cpw 4547 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-pw 4549 df-sn 4574 |
| This theorem is referenced by: snexALT 5319 snwf 9702 tsksn 10651 mnusnd 44309 |
| Copyright terms: Public domain | W3C validator |