MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsspw Structured version   Visualization version   GIF version

Theorem snsspw 4793
Description: The singleton of a class is a subset of its power class. (Contributed by NM, 21-Jun-1993.)
Assertion
Ref Expression
snsspw {𝐴} ⊆ 𝒫 𝐴

Proof of Theorem snsspw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqimss 3988 . . 3 (𝑥 = 𝐴𝑥𝐴)
2 velsn 4589 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
3 velpw 4552 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
41, 2, 33imtr4i 292 . 2 (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝒫 𝐴)
54ssriv 3933 1 {𝐴} ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  wss 3897  𝒫 cpw 4547  {csn 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3914  df-pw 4549  df-sn 4574
This theorem is referenced by:  snexALT  5319  snwf  9702  tsksn  10651  mnusnd  44309
  Copyright terms: Public domain W3C validator