Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prsspwg | Structured version Visualization version GIF version |
Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by Thierry Arnoux, 3-Oct-2016.) (Revised by NM, 18-Jan-2018.) |
Ref | Expression |
---|---|
prsspwg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssg 4752 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝒫 𝐶 ∧ 𝐵 ∈ 𝒫 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝐶)) | |
2 | elpwg 4536 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐶 ↔ 𝐴 ⊆ 𝐶)) | |
3 | elpwg 4536 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐵 ∈ 𝒫 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
4 | 2, 3 | bi2anan9 636 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝒫 𝐶 ∧ 𝐵 ∈ 𝒫 𝐶) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶))) |
5 | 1, 4 | bitr3d 280 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3887 𝒫 cpw 4533 {cpr 4563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-pw 4535 df-sn 4562 df-pr 4564 |
This theorem is referenced by: prsspw 4776 |
Copyright terms: Public domain | W3C validator |