|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > prsspwg | Structured version Visualization version GIF version | ||
| Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by Thierry Arnoux, 3-Oct-2016.) (Revised by NM, 18-Jan-2018.) | 
| Ref | Expression | 
|---|---|
| prsspwg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prssg 4819 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝒫 𝐶 ∧ 𝐵 ∈ 𝒫 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝒫 𝐶)) | |
| 2 | elpwg 4603 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐶 ↔ 𝐴 ⊆ 𝐶)) | |
| 3 | elpwg 4603 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐵 ∈ 𝒫 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
| 4 | 2, 3 | bi2anan9 638 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝒫 𝐶 ∧ 𝐵 ∈ 𝒫 𝐶) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶))) | 
| 5 | 1, 4 | bitr3d 281 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3951 𝒫 cpw 4600 {cpr 4628 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-un 3956 df-ss 3968 df-pw 4602 df-sn 4627 df-pr 4629 | 
| This theorem is referenced by: prsspw 4845 | 
| Copyright terms: Public domain | W3C validator |