Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem12 Structured version   Visualization version   GIF version

Theorem prtlem12 35534
Description: Lemma for prtex 35547 and prter3 35549. (Contributed by Rodolfo Medina, 13-Oct-2010.)
Assertion
Ref Expression
prtlem12 ( = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)} → Rel )
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑢)   (𝑥,𝑦,𝑢)

Proof of Theorem prtlem12
StepHypRef Expression
1 relopab 5582 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
2 releq 5537 . 2 ( = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)} → (Rel ↔ Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}))
31, 2mpbiri 259 1 ( = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)} → Rel )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wrex 3106  {copab 5024  Rel wrel 5448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-rab 3114  df-v 3439  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-opab 5025  df-xp 5449  df-rel 5450
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator