![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem12 | Structured version Visualization version GIF version |
Description: Lemma for prtex 38262 and prter3 38264. (Contributed by Rodolfo Medina, 13-Oct-2010.) |
Ref | Expression |
---|---|
prtlem12 | ⊢ ( ∼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} → Rel ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabv 5814 | . 2 ⊢ Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
2 | releq 5769 | . 2 ⊢ ( ∼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} → (Rel ∼ ↔ Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)})) | |
3 | 1, 2 | mpbiri 258 | 1 ⊢ ( ∼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} → Rel ∼ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∃wrex 3064 {copab 5203 Rel wrel 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-v 3470 df-in 3950 df-ss 3960 df-opab 5204 df-xp 5675 df-rel 5676 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |