| Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem12 | Structured version Visualization version GIF version | ||
| Description: Lemma for prtex 38840 and prter3 38842. (Contributed by Rodolfo Medina, 13-Oct-2010.) |
| Ref | Expression |
|---|---|
| prtlem12 | ⊢ ( ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} → Rel ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabv 5811 | . 2 ⊢ Rel {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
| 2 | releq 5766 | . 2 ⊢ ( ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} → (Rel ∼ ↔ Rel {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)})) | |
| 3 | 1, 2 | mpbiri 258 | 1 ⊢ ( ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} → Rel ∼ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wrex 3059 {copab 5185 Rel wrel 5670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-ss 3948 df-opab 5186 df-xp 5671 df-rel 5672 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |