Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem12 | Structured version Visualization version GIF version |
Description: Lemma for prtex 37155 and prter3 37157. (Contributed by Rodolfo Medina, 13-Oct-2010.) |
Ref | Expression |
---|---|
prtlem12 | ⊢ ( ∼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} → Rel ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabv 5763 | . 2 ⊢ Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
2 | releq 5718 | . 2 ⊢ ( ∼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} → (Rel ∼ ↔ Rel {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)})) | |
3 | 1, 2 | mpbiri 257 | 1 ⊢ ( ∼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} → Rel ∼ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∃wrex 3070 {copab 5154 Rel wrel 5625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-in 3905 df-ss 3915 df-opab 5155 df-xp 5626 df-rel 5627 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |