Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem13 Structured version   Visualization version   GIF version

Theorem prtlem13 35485
Description: Lemma for prter1 35496, prter2 35498, prter3 35499 and prtex 35497. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem13.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prtlem13 (𝑧 𝑤 ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑦,𝐴   𝑤,𝑣,𝑥,𝑦   𝑧,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑧,𝑤)   (𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem prtlem13
StepHypRef Expression
1 vex 3435 . 2 𝑧 ∈ V
2 vex 3435 . 2 𝑤 ∈ V
3 elequ2 2094 . . . . 5 (𝑢 = 𝑣 → (𝑥𝑢𝑥𝑣))
4 elequ2 2094 . . . . 5 (𝑢 = 𝑣 → (𝑦𝑢𝑦𝑣))
53, 4anbi12d 630 . . . 4 (𝑢 = 𝑣 → ((𝑥𝑢𝑦𝑢) ↔ (𝑥𝑣𝑦𝑣)))
65cbvrexv 3401 . . 3 (∃𝑢𝐴 (𝑥𝑢𝑦𝑢) ↔ ∃𝑣𝐴 (𝑥𝑣𝑦𝑣))
7 elequ1 2086 . . . . 5 (𝑥 = 𝑧 → (𝑥𝑣𝑧𝑣))
8 elequ1 2086 . . . . 5 (𝑦 = 𝑤 → (𝑦𝑣𝑤𝑣))
97, 8bi2anan9 635 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝑣𝑦𝑣) ↔ (𝑧𝑣𝑤𝑣)))
109rexbidv 3257 . . 3 ((𝑥 = 𝑧𝑦 = 𝑤) → (∃𝑣𝐴 (𝑥𝑣𝑦𝑣) ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣)))
116, 10syl5bb 284 . 2 ((𝑥 = 𝑧𝑦 = 𝑤) → (∃𝑢𝐴 (𝑥𝑢𝑦𝑢) ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣)))
12 prtlem13.1 . 2 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
131, 2, 11, 12braba 5306 1 (𝑧 𝑤 ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1520  wrex 3104   class class class wbr 4956  {copab 5018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pr 5214
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-sn 4467  df-pr 4469  df-op 4473  df-br 4957  df-opab 5019
This theorem is referenced by:  prtlem16  35486  prtlem18  35494  prter1  35496  prter3  35499
  Copyright terms: Public domain W3C validator