Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem13 Structured version   Visualization version   GIF version

Theorem prtlem13 38988
Description: Lemma for prter1 38999, prter2 39001, prter3 39002 and prtex 39000. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem13.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prtlem13 (𝑧 𝑤 ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑦,𝐴   𝑤,𝑣,𝑥,𝑦   𝑧,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑧,𝑤)   (𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem prtlem13
StepHypRef Expression
1 vex 3441 . 2 𝑧 ∈ V
2 vex 3441 . 2 𝑤 ∈ V
3 elequ2 2128 . . . . 5 (𝑢 = 𝑣 → (𝑥𝑢𝑥𝑣))
4 elequ2 2128 . . . . 5 (𝑢 = 𝑣 → (𝑦𝑢𝑦𝑣))
53, 4anbi12d 632 . . . 4 (𝑢 = 𝑣 → ((𝑥𝑢𝑦𝑢) ↔ (𝑥𝑣𝑦𝑣)))
65cbvrexvw 3212 . . 3 (∃𝑢𝐴 (𝑥𝑢𝑦𝑢) ↔ ∃𝑣𝐴 (𝑥𝑣𝑦𝑣))
7 elequ1 2120 . . . . 5 (𝑥 = 𝑧 → (𝑥𝑣𝑧𝑣))
8 elequ1 2120 . . . . 5 (𝑦 = 𝑤 → (𝑦𝑣𝑤𝑣))
97, 8bi2anan9 638 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝑣𝑦𝑣) ↔ (𝑧𝑣𝑤𝑣)))
109rexbidv 3157 . . 3 ((𝑥 = 𝑧𝑦 = 𝑤) → (∃𝑣𝐴 (𝑥𝑣𝑦𝑣) ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣)))
116, 10bitrid 283 . 2 ((𝑥 = 𝑧𝑦 = 𝑤) → (∃𝑢𝐴 (𝑥𝑢𝑦𝑢) ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣)))
12 prtlem13.1 . 2 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
131, 2, 11, 12braba 5480 1 (𝑧 𝑤 ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wrex 3057   class class class wbr 5093  {copab 5155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156
This theorem is referenced by:  prtlem16  38989  prtlem18  38997  prter1  38999  prter3  39002
  Copyright terms: Public domain W3C validator