![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem13 | Structured version Visualization version GIF version |
Description: Lemma for prter1 38577, prter2 38579, prter3 38580 and prtex 38578. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
prtlem13.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
Ref | Expression |
---|---|
prtlem13 | ⊢ (𝑧 ∼ 𝑤 ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3466 | . 2 ⊢ 𝑧 ∈ V | |
2 | vex 3466 | . 2 ⊢ 𝑤 ∈ V | |
3 | elequ2 2114 | . . . . 5 ⊢ (𝑢 = 𝑣 → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ 𝑣)) | |
4 | elequ2 2114 | . . . . 5 ⊢ (𝑢 = 𝑣 → (𝑦 ∈ 𝑢 ↔ 𝑦 ∈ 𝑣)) | |
5 | 3, 4 | anbi12d 630 | . . . 4 ⊢ (𝑢 = 𝑣 → ((𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢) ↔ (𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣))) |
6 | 5 | cbvrexvw 3226 | . . 3 ⊢ (∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢) ↔ ∃𝑣 ∈ 𝐴 (𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣)) |
7 | elequ1 2106 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝑣 ↔ 𝑧 ∈ 𝑣)) | |
8 | elequ1 2106 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 ∈ 𝑣 ↔ 𝑤 ∈ 𝑣)) | |
9 | 7, 8 | bi2anan9 636 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣) ↔ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
10 | 9 | rexbidv 3169 | . . 3 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (∃𝑣 ∈ 𝐴 (𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣) ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
11 | 6, 10 | bitrid 282 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢) ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
12 | prtlem13.1 | . 2 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
13 | 1, 2, 11, 12 | braba 5543 | 1 ⊢ (𝑧 ∼ 𝑤 ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1534 ∃wrex 3060 class class class wbr 5153 {copab 5215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-opab 5216 |
This theorem is referenced by: prtlem16 38567 prtlem18 38575 prter1 38577 prter3 38580 |
Copyright terms: Public domain | W3C validator |