![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem13 | Structured version Visualization version GIF version |
Description: Lemma for prter1 38835, prter2 38837, prter3 38838 and prtex 38836. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
prtlem13.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
Ref | Expression |
---|---|
prtlem13 | ⊢ (𝑧 ∼ 𝑤 ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . 2 ⊢ 𝑧 ∈ V | |
2 | vex 3492 | . 2 ⊢ 𝑤 ∈ V | |
3 | elequ2 2123 | . . . . 5 ⊢ (𝑢 = 𝑣 → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ 𝑣)) | |
4 | elequ2 2123 | . . . . 5 ⊢ (𝑢 = 𝑣 → (𝑦 ∈ 𝑢 ↔ 𝑦 ∈ 𝑣)) | |
5 | 3, 4 | anbi12d 631 | . . . 4 ⊢ (𝑢 = 𝑣 → ((𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢) ↔ (𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣))) |
6 | 5 | cbvrexvw 3244 | . . 3 ⊢ (∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢) ↔ ∃𝑣 ∈ 𝐴 (𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣)) |
7 | elequ1 2115 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝑣 ↔ 𝑧 ∈ 𝑣)) | |
8 | elequ1 2115 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 ∈ 𝑣 ↔ 𝑤 ∈ 𝑣)) | |
9 | 7, 8 | bi2anan9 637 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣) ↔ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
10 | 9 | rexbidv 3185 | . . 3 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (∃𝑣 ∈ 𝐴 (𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣) ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
11 | 6, 10 | bitrid 283 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢) ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
12 | prtlem13.1 | . 2 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
13 | 1, 2, 11, 12 | braba 5556 | 1 ⊢ (𝑧 ∼ 𝑤 ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wrex 3076 class class class wbr 5166 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 |
This theorem is referenced by: prtlem16 38825 prtlem18 38833 prter1 38835 prter3 38838 |
Copyright terms: Public domain | W3C validator |