Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem13 Structured version   Visualization version   GIF version

Theorem prtlem13 36861
Description: Lemma for prter1 36872, prter2 36874, prter3 36875 and prtex 36873. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem13.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prtlem13 (𝑧 𝑤 ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑦,𝐴   𝑤,𝑣,𝑥,𝑦   𝑧,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑧,𝑤)   (𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem prtlem13
StepHypRef Expression
1 vex 3434 . 2 𝑧 ∈ V
2 vex 3434 . 2 𝑤 ∈ V
3 elequ2 2124 . . . . 5 (𝑢 = 𝑣 → (𝑥𝑢𝑥𝑣))
4 elequ2 2124 . . . . 5 (𝑢 = 𝑣 → (𝑦𝑢𝑦𝑣))
53, 4anbi12d 630 . . . 4 (𝑢 = 𝑣 → ((𝑥𝑢𝑦𝑢) ↔ (𝑥𝑣𝑦𝑣)))
65cbvrexvw 3381 . . 3 (∃𝑢𝐴 (𝑥𝑢𝑦𝑢) ↔ ∃𝑣𝐴 (𝑥𝑣𝑦𝑣))
7 elequ1 2116 . . . . 5 (𝑥 = 𝑧 → (𝑥𝑣𝑧𝑣))
8 elequ1 2116 . . . . 5 (𝑦 = 𝑤 → (𝑦𝑣𝑤𝑣))
97, 8bi2anan9 635 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝑣𝑦𝑣) ↔ (𝑧𝑣𝑤𝑣)))
109rexbidv 3227 . . 3 ((𝑥 = 𝑧𝑦 = 𝑤) → (∃𝑣𝐴 (𝑥𝑣𝑦𝑣) ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣)))
116, 10syl5bb 282 . 2 ((𝑥 = 𝑧𝑦 = 𝑤) → (∃𝑢𝐴 (𝑥𝑢𝑦𝑢) ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣)))
12 prtlem13.1 . 2 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
131, 2, 11, 12braba 5451 1 (𝑧 𝑤 ↔ ∃𝑣𝐴 (𝑧𝑣𝑤𝑣))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1541  wrex 3066   class class class wbr 5078  {copab 5140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141
This theorem is referenced by:  prtlem16  36862  prtlem18  36870  prter1  36872  prter3  36875
  Copyright terms: Public domain W3C validator