| Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem13 | Structured version Visualization version GIF version | ||
| Description: Lemma for prter1 38924, prter2 38926, prter3 38927 and prtex 38925. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| prtlem13.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
| Ref | Expression |
|---|---|
| prtlem13 | ⊢ (𝑧 ∼ 𝑤 ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . 2 ⊢ 𝑧 ∈ V | |
| 2 | vex 3440 | . 2 ⊢ 𝑤 ∈ V | |
| 3 | elequ2 2126 | . . . . 5 ⊢ (𝑢 = 𝑣 → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ 𝑣)) | |
| 4 | elequ2 2126 | . . . . 5 ⊢ (𝑢 = 𝑣 → (𝑦 ∈ 𝑢 ↔ 𝑦 ∈ 𝑣)) | |
| 5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝑢 = 𝑣 → ((𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢) ↔ (𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣))) |
| 6 | 5 | cbvrexvw 3211 | . . 3 ⊢ (∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢) ↔ ∃𝑣 ∈ 𝐴 (𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣)) |
| 7 | elequ1 2118 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝑣 ↔ 𝑧 ∈ 𝑣)) | |
| 8 | elequ1 2118 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 ∈ 𝑣 ↔ 𝑤 ∈ 𝑣)) | |
| 9 | 7, 8 | bi2anan9 638 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣) ↔ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 10 | 9 | rexbidv 3156 | . . 3 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (∃𝑣 ∈ 𝐴 (𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣) ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 11 | 6, 10 | bitrid 283 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢) ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
| 12 | prtlem13.1 | . 2 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
| 13 | 1, 2, 11, 12 | braba 5477 | 1 ⊢ (𝑧 ∼ 𝑤 ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wrex 3056 class class class wbr 5091 {copab 5153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 |
| This theorem is referenced by: prtlem16 38914 prtlem18 38922 prter1 38924 prter3 38927 |
| Copyright terms: Public domain | W3C validator |