![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem13 | Structured version Visualization version GIF version |
Description: Lemma for prter1 38262, prter2 38264, prter3 38265 and prtex 38263. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
prtlem13.1 | ⊢ ∼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
Ref | Expression |
---|---|
prtlem13 | ⊢ (𝑧 ∼ 𝑤 ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3472 | . 2 ⊢ 𝑧 ∈ V | |
2 | vex 3472 | . 2 ⊢ 𝑤 ∈ V | |
3 | elequ2 2113 | . . . . 5 ⊢ (𝑢 = 𝑣 → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ 𝑣)) | |
4 | elequ2 2113 | . . . . 5 ⊢ (𝑢 = 𝑣 → (𝑦 ∈ 𝑢 ↔ 𝑦 ∈ 𝑣)) | |
5 | 3, 4 | anbi12d 630 | . . . 4 ⊢ (𝑢 = 𝑣 → ((𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢) ↔ (𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣))) |
6 | 5 | cbvrexvw 3229 | . . 3 ⊢ (∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢) ↔ ∃𝑣 ∈ 𝐴 (𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣)) |
7 | elequ1 2105 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝑣 ↔ 𝑧 ∈ 𝑣)) | |
8 | elequ1 2105 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 ∈ 𝑣 ↔ 𝑤 ∈ 𝑣)) | |
9 | 7, 8 | bi2anan9 636 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣) ↔ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
10 | 9 | rexbidv 3172 | . . 3 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (∃𝑣 ∈ 𝐴 (𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣) ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
11 | 6, 10 | bitrid 283 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢) ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) |
12 | prtlem13.1 | . 2 ⊢ ∼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
13 | 1, 2, 11, 12 | braba 5530 | 1 ⊢ (𝑧 ∼ 𝑤 ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∃wrex 3064 class class class wbr 5141 {copab 5203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 |
This theorem is referenced by: prtlem16 38252 prtlem18 38260 prter1 38262 prter3 38265 |
Copyright terms: Public domain | W3C validator |